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A B S T R A C T

Machine scheduling with raw material constraints has a great practical potential, as it is solved by ad hoc
methods in practice in several manufacturing and logistic environments. In this paper we propose an exact
method for solving this problem with the maximum lateness objective based on mathematical programming, our
main contribution being a set of new cutting planes that can be used to accelerate a MIP solver. We report on
computational results on a wide set of instances.

1. Introduction

Counting with raw materials (or non-renewable resources more
generally) in the course of planning and scheduling of manufacturing
processes is inevitable in order to obtain feasible production plans and
schedules (see e.g., Stadtler & Kilger, 2008). The following case occurs
frequently in practice and constitutes the main motivation of this paper.
We have to schedule the production of some parts on a production line
over the next week, and we have an initial stock and expect some ad-
ditional shipments from the suppliers over the week. Our goal is to
minimize the maximum of the late deliveries, or in other words, the
lateness. Since the parts may require common raw materials for their
production, it is not obvious how to allocate the supplies to the parts to
produce. The arising optimization problem is precisely the topic of this
paper.

More formally, we focus on scheduling a single machine subject to
raw material constraints. That is, in addition to the machine, there are
some raw materials with an initial stock and some additional replen-
ishments over time with a priori known dates and quantities. Jobs may
require various quantities from these resources, and a job can be started
only if the required amount is on stock. Upon starting a job, the stock
level of all the resources are decreased by the quantities needed by the
job. Each job has a due-date and the objective is to minimize the
maximum lateness. As an illustration, consider Fig. 1 in which a sche-
dule of two jobs is shown on a single machine, and notice that job J2

must wait until the replenishment of the raw-material, because the first
scheduled job decreases the stock level below its requirement.

The above model has been first studied by Carlier (1984), and by
Slowinski (1984). In particular, Carlier has shown that minimizing the

maximum job completion time (makespan) is NP-hard in the strong
sense in general. This implies that our problem is NP-hard in the strong
sense as well. Over the years, a number of papers appeared dealing with
some variants and proposing either complexity results (Gafarov,
Lazarev, & Werner, 2011; Toker, Kondakci, & Erkip, 1991; Xie, 1997),
or approximation algorithms (Grigoriev, Holthuijsen, & van de
Klundert, 2005; Györgyi & Kis, 2015a, 2015b; Györgyi & Kis, 2017).
However, there are only sporadic computational results on this pro-
blem. Grigoriev et al. (2005) have provided some test results for one of
their approximation algorithms. Belkaid, Maliki, Boudahri, and Sari
(2012) propose lower bounds and heuristics for minimizing the make-
span in a parallel machine environment with non-renewable resource
constraints.

To our best knowledge, no exact method has been described for our
problem in the literature. However, for a related problem, where some
of the jobs produce, while other jobs consume some non-renewable
resources (and there are no replenishments from external sources)
Briskorn, Jaehn, and Pesch (2013) propose an exact method for mini-
mizing the total weighted completion time of the jobs. In the more
general project scheduling setting, Neumann and Schwindt (2003)
study the makespan minimization problem with inventory constraints,
and describe a branch-and-bound method for solving it.

Single machine scheduling with the maximum lateness objective is
polynomially solvable by ordering the jobs in earliest due-date order,
see Jackson (1955). In spite of the existence of a polynomial time al-
gorithm, we are not aware of any linear programming based method of
polynomial time complexity in which the coefficients of the variables
are determined by polynomial functions of the problem data. That is,
we require that from any input with n jobs we should be able to get the
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LP formulation by plugging the problem data into multivariate poly-
nomials that yield the coefficients of the decision variables. However, it
is not allowed to insert new constraints, or do some sorting and then fill
in the coefficients of the variables and the right-hand-sides in the LP. In
fact, Blazewicz, Dror, and Weglarz (1991) propose a MIP formulation
for L1‖ max using positional variables. Moreover, a number of alternative
formulations are compared and evaluated for single machine sche-
duling problems with various objective function by Keha, Khowala, and
Fowler (2009). Some of the models of Keha et al. find their roots in the
MIP model of Manne (1960) for the job-shop scheduling problem using
completion time variables and ordering variables for each pair of dis-
tinct jobs requiring the same machine. In contrast, for single machine
scheduling with the sum of (weighted) job completion times objective,

∑ w C1‖ j j, an LP formulation is developed by Queyranne (1993) in
which the coefficients of the constraints are linear functions of the
problem data, while the right-hand-sides are determined by quadratic
polynomials of the data. Although the number of inequalities is ex-
ponential in the number of jobs, but they can be separated efficiently,
so the LP can be solved in polynomial time. We will adapt the in-
equalities of Queyranne in Section 3.2 to our MIP model.

Main results and structure of the paper. Firstly, we will elaborate upon
the modeling of the problem by a mixed-integer linear program (MIP).
Since we have to compute the maximum lateness objective, choosing
the right MIP model is a non-trivial issue (Section 2). Second, we will
devise new inequalities valid for the feasible solutions of the MIP for-
mulation, and also two which may cut off feasible solutions, but they
keep at least one optimal solution (Section 3.2). The new inequalities
will be used in a branch-and-cut method to strengthen the LP-relaxation
of the MIP formulation (Section 3.1). We will also sketch a heuristic
method for getting an initial feasible solution as well as an upper bound
on the optimum value in Section 3.3. We emphasize that in most papers
mentioned above, mathematical programs are used only for modeling
the problem, while the methods devised are based on some other re-
presentations. In contrast, our branch-and-cut method uses the MIP
model as the representation of the problem, and we do not use the
solver as a black-box, instead, we generate cutting planes in the course
of the solution process in order to speed up the optimization algorithm.
Thirdly, we summarize our computational results on a large set of
benchmark instances. The goal of the experiments is to determine the
limitation of the method, and also to assess the benefit of using cutting
planes to strengthen the MIP formulation (Section 4). Finally, we con-
clude the paper in Section 5.

2. Problem formulation

In this section first we define our problem more formally, then de-
scribe our MIP formulation in several steps.

In our scheduling problem there is a single machine, a set of n jobs
J , and a set of ρ non-renewable resources R . Each job j has a pro-
cessing time >p 0j , a due-date ⩾d 0j , and resource requirements

⩾a 0ij for ∈i R . The non-renewable resources are supplied at dates
= < < ⋯ <u u u0 q1 2 , and the amount supplied from resource ∈i R at

date uℓ is ⩾∼b 0i,ℓ . All problem data are non-negative and integer.
A schedule specifies the starting time Sj of each job ∈j J ; it is

feasible if (i) the jobs are not preempted, (ii) no two distinct jobs
overlap in time, i.e., + ⩽S p Sj j j1 1 2 or + ⩽S p Sj j j2 2 1 for each pair of
distinct jobs j1 and j2, and (iii) for each resource ∈i R , and for each
time point t, the total supply until time t is not less than the total
consumption of those jobs starting not later than t, i.e., if ⩽u tℓ is the
last supply date no later than t, then ∑ ⩽ ∑ ∼

∈ ⩽ =a bj J S t ij k ik: 1
ℓ

j
for each

resource ∈i R . We aim at finding a feasible schedule S minimizing the
maximum lateness ≔ −∈L S C S d( ) max ( )j j jmax J , where = +C S S p( )j j j is
the completion time of job j in schedule S.

We may assume that for each ∈i R , the total demand does not
exceed the total supply, i.e., ∑ ⩽ ∑ ∼

∈ =a bj ij
q

iℓ 1 ℓJ
, otherwise no feasible

solution exists. The cumulative supply of resource i up to supply date uℓ

is ≔ ∑ ∼
=b bi k ikℓ 1

ℓ .
Keha et al. (2009) describe 4 distinct MIP formulations for single

machine scheduling with the maximum lateness objective ( L1‖ max).
None of these formulations take non-renewable resources into account,
but any of them could be further developed to model our problem. We
have ruled out the time-indexed formulation, since in that model the
number of variables linearly depends on the magnitude of the job
processing times, and should we extended that model by non-renewable
resource constraints, also on the magnitude of the supply dates. After
some preliminary tests (we extended each model of Keha et al. by
modeling the non-renewable resource constraints), we have chosen the
model with completion time variables, and we describe it in detail sub-
sequently.

We use three main types of variables in our formulation. Variable Cj
denotes the completion time of job ∈j J and for each ordered pair of
jobs ∈j j,1 2 J with <j j1 2, the binary variable ord j j,1 2 has value 1 if and
only if j1 precedes j2 in the schedule. Finally, there are q·| |J binary
decision variables ∈z j,jℓ J , = … qℓ 1, , , to assign jobs to supplies, i.e.,

=z 1jℓ if and only if job j can be started before +uℓ 1 = ∞+u( )q 1 , i.e., the
first ℓ supplies can cover its resource requirements along with all other
jobs ′ ≠j j with =′z 1j ℓ . Then ⩾ −z zj jℓ ,ℓ 1 must hold and if

− =−z z 1j jℓ ,ℓ 1 then job j must not start before uℓ. The MIP formulation is

Lminimize max (1)

⩾ ∈C p j
subject to

,j j J (2)

+ ⩽ + − ∈ <C p C M ord j j j j·(1 ), , ,j j j j j, 1 2 1 21 2 2 1 2 J (3)

+ ⩽ + ∈ <C p C M ord j j j j· , , ,j j j j j, 1 2 1 22 1 1 1 2 J (4)

⩾ − ∈L C d j,j jmax J (5)

∑− ⩾ − ∈
=

−C p u z z j·( ),j j

q

j j
ℓ 2

ℓ ,ℓ ,ℓ 1 J
(6)

∑ ⩽ = … − ∈
∈

a z b q i, ℓ 1, , 1,
j

ij j iℓ ℓ R
J (7)

⩽ ∈ = …−z z j q, , ℓ 2, ,j j,ℓ 1 ,ℓ J (8)

= ∈z j1,j q, J (9)

∈ ∈ <ord j j j j{0,1}, , ,j j, 1 2 1 21 2 J (10)

∈ ∈ = …z j q{0,1}, , ℓ 1, , .jℓ J (11)

The objective is to minimize Lmax. Constraints (2)–(4) ensure that the
jobs do not overlap in time. Inequalities (5) express that Lmax is at least

−∈ C dmaxj j jJ . By (6) for each job j, the starting time −C pj j is at least the
uℓ provided that − =−z z 1j jℓ ,ℓ 1 . The resource constraints are encoded by
(7), since if =z 1jℓ then job j can be started before +uℓ 1, hence, its re-
source consumption must be satisfied from the cumulative supply biℓ,
for each ∈i R . The rest of the constraints order the zjℓ, set =z 1jq , since

Fig. 1. Illustration of the problem. The height of a job indicates the amount of the re-
quired raw material.
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