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a b s t r a c t

Acoustic detection of cetaceans is challenged by the variability of calls and the presence of variable back-
ground noise. One detection method is to start with frequency band-limited signal and noise estimates,
and apply a likelihood ratio test (LRT). These detectors suffer from false alarms when broadband signals
overlap the band of interest, triggering detection. Some detectors only consider previous samples, causing
further false alarms. The authors propose a method of reducing false alarms by defining a guard band that
is not expected to contain energy from the species of interest. A second LRT is performed by testing the
ratio of the signal estimate in the signal band with the signal estimate of the guard band. This method is
shown to reduce false alarms with a small reduction in detection performance. A detection method is also
presented that can be optimized for high processing efficiency, while improving false-alarm rejection
from signals that are longer in duration than the signal of interest. Performance is demonstrated on real
cetacean recordings and ocean noise. The detection algorithm is implemented in PAMGUARD, an open
source Java application designed for passive acoustic monitoring (PAM) of cetaceans.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic detection, localization, and classification of cetaceans
are required for a number of applications, including
anthropogenic-impact mitigation and habitat surveys. Both detec-
tion performance and false-alarm rejection are important for these
two applications. Impact mitigation further requires that operators
quickly make decisions with respect to contact. Population-survey
data analysis takes place over a longer timeframe, but can include
vast amounts of data with an increased emphasis on correct classi-
fication. A staged processing approach can be used with detection
being the first stage. The goal is to have a high detection rate and
moderate or low false-alarm rate to significantly reduce the vol-
ume of data. Subsequent stages can be used to further refine clas-
sification and filter false alarms.

The challenge is that marine-mammal vocalizations are highly
variable with frequency content ranging from 10 Hz to, at least
150 kHz [1]. Durations may be as little as a few milliseconds for
an echo location click, but may extend to tens of minutes for a
complex humpback song. Vocalizations may be described by adjec-
tives such as tonal, pulsive, song, shriek, FM sweep, and many
others. Robust cetacean detection is a difficult problem and a
number of techniques have been developed, each with their own

merits. Generic algorithms that use matched filters to correlate
time-series data or spectrogram correlation to detect patterns in
spectrograms have been developed [2,3]. These techniques are use-
ful when the cetacean vocalization is predictable but are limited by
requiring detailed priori knowledge and stability of the vocaliza-
tion [4,5]. Another technique based on band-limited energy detec-
tion is also common [6,7]. This technique is well suited to signals
that are characteristic in duration and bandwidth, but too variable
for correlation-based processing. One example of this class of call is
produced by the North Atlantic right whale (Eubalaena glacialis),
which has been shown to adapt its vocalization to the environ-
ment. One of its vocalization types is nominally represented
by a frequency-modulated (FM) upsweep that is found in the
50–400 Hz band with duration of approximately 1 s. However,
initial frequency, FM sweep rate, duration, and bandwidth will
vary [5].

For energy detection, a detection function can be formed by
estimating the signal over a short-term average and dividing it
by a longer average background noise estimate [6,7]. This function
takes the form of a likelihood ratio test (LRT) common to many
detection strategies [8]. The primary difference between LRT based
detectors is the statistic used to generate the LRT [5,8]. In the LRT
case, the detection function is sensitive to abrupt changes in band-
limited energy level, characteristic of a cetacean vocalization. In
similar detectors, such as the sperm-whale click detector [6], the
estimates have been computed using a single-pole IIR (infinite
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impulse response) filter, or exponential average. This approach
prevents the detector from discriminating between a short and
long duration signal, causing one form of false alarm. The detection
function is also limited to band-energy data from the band of inter-
est, preventing it from discriminating between band-limited and
broadband signals. False alarms can be a frequent problem in this
type of detector as non-stationary, non-Gaussian background noise
from machinery, other animals, or the environment can cause
detection [10].

The objective is to develop a flexible, generic detector that will
provide adequate first-stage detection performance over a wide
variety of species. False alarms from longer duration signals and
wide-band noise could be filtered by subsequent processing stages
as done in [9], but many can also be efficiently eliminated in the
first detection stage, reducing complex processing on high volumes
of data in noisy environments. This article proposes improvements
to band-limited energy detection that significantly reduce false
alarms. Detection performance and processing load are very simi-
lar to other energy detectors, whereas processing load is less than
that of correlation-based detectors, especially as the number of
species is increased. This allows the algorithm to be implemented
in low-power processors, which are commonly used for embedded
processing.

2. Signal processing

Data is processed using a consistent processing stream with the
processing parameters tuned for each species. First, a fast Fourier
transform (FFT) is performed with overlapping segments and the
power spectral density (PSD) is estimated. A Hann window is used
with overlap and optional spectral averaging. Fifty to seventy-five
percent overlap with no averaging are typically used for process-
ing. Specific examples of parameters are presented in Table 3. Next
an arbitrary number of band-limited energy time series are com-
puted by averaging PSD estimates between a minimum and max-
imum frequency chosen to match the vocalization of the species
of interest. Guard bands are also defined where no target (signal)
energy is expected for use later in the detector.

The band-limited energy data are used to compute a signal and
noise estimate. Two estimation methods are provided. The expo-
nential average has typically been used in [6], but an alternative
and often more optimal, in terms of detection performance, split-
window average is suggested here.

The exponential average estimate can be computed using

y½n� ¼ ay½n� 1� þ ð1� aÞx½n� ð1Þ
where a is a weighting constant that must be less than 1.0. The vari-
able x represents an input band-limited energy sample for sample
n; y represents the estimate at samples n and n � 1 respectively. An
a value of 0.0 produces output samples y identical to the input sam-
ples x (i.e. no averaging). The closer a gets to the value 1.0, the more
weight the previous estimate output samples are given and thus the
longer the averaging. For the noise estimate, Eq. (1) can be further
enhanced by allowing a to be changed based on the noise estimate’s
level relative to the signal estimate. This change is done to allow the
noise estimate to quickly recover after a loud transient as further
explained in Section 3. This decision takes the form

a ¼ aS; yN½n� 1� 6 k � yS½n� 1�
aN otherwise

�
ð2Þ

where subscripts S and N denote respective signal and noise
estimates.

The split-window estimate uses two rectangular windows of
different widths to estimate the signal and noise levels. The win-
dows have an odd number of samples to allow precise definition

of the window center. The noise window, WN must be longer than
the signal window, WS which is chosen based on priori knowledge
of the vocalization characteristics of interest as will be shown in
Section 4.2. The signal estimate for each sample n is estimated
using

yS½n� ¼
1
Ws

XðWS�1Þ=2

i¼�ðWS�1Þ=2
x½nþ i�: ð3Þ

The noise is estimated using

yN ½n� ¼
1

WN �WS

XðWN�1Þ=2

i¼�ðWN�1Þ=2
x½nþ i� � yS½n�WS

" #
: ð4Þ

The split-window estimator is non-causal, that is, to calculate
output sample y[n] it must have access to input sample
x[n + (WN � 1)/2]. In a real-time processing system, this means that
the output will lag the input by approximately half of the length of
the noise window. Depending on the time resolution and the
length of the estimator’s windows, the lag could be several seconds
long, resulting in a delay before detections are declared. The PAM-
GUARD [9] implementation of the detector provides both estima-
tion options.

Implementation of the split-window estimator occurs in the
time domain and uses a processing optimization. The optimization
exploits the sliding window by simply adding the newest sample
and removing the oldest, requiring a processor load that is very
similar to that of the exponential average. This method requires
management of a circular buffer containing all active samples,
but saves considerable processor load over a brute-force
implementation.

It is assumed that the signal is restricted to a given bandwidth.
A two-stage LRT compares the signal detection using the restricted
bandwidth with that for a broader bandwidth. By eliminating the
cases where there is no difference in the performance, broadband
transient signals do not trigger false detections. First the restricted
band likelihood is computed using

Lt ¼ yS
yN

> st ð5Þ

where Lt represents the estimated likelihood ratio test for the
restricted signal band and st is the in-band threshold. With wider
guard bands defined above and below the signal band, the first
stage LRT test passed, the secondary LRT is also performed using

Lb ¼ yS
ySG

> sb ð6Þ

where ySG is the average signal estimate of all associated guard
bands and sb is the guard-band threshold. Any number of guard
bands may be defined, though one are two are typically sufficient.
The upper and lower guard bands are chosen based on a priori
knowledge of the expected signal. The lower guard band, signal
band, and upper guard band need not be contiguous. By not requir-
ing continuous spectrum coverage, spectral gaps may be introduced
to ensure optimal performance of the first stage while minimizing
signal leakage into the guard bands. The second test ensures that
the detected signal is limited to the frequency band of interest. st
and sb are constant signal to noise ratio thresholds.

3. Synthetic examples

The differences between the two estimation options are best
demonstrated on synthetic data representing ideal band-limited
energy time series. Two synthetic representations of x[n] with a
sample rate of 1 Hz are processed through each detector illustrat-
ing the output of Eq. (5). Both pulses have equal SNR (20 dB), but
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