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a b s t r a c t

We consider the problem of staffing service centers with quality-of-service constraints. We focus on the
casewhere the arrival rates are uncertain.We introduce formulations that handle staffing decisionsmade
over two decision periods, minimizing the staffing costs over the stages while satisfying a service quality
constraint on the second stage operation. A Bayesian update is used to obtain the second-stage arrival-rate
distribution based on the first stage prior arrival-rate distribution and the observations in the first stage.
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1. Introduction

In this paper we develop a methodology for optimally updating
call forecasts and staffing levels in a later period based on infor-
mation about customer demand in earlier periods, and in turn
to optimally set initial staffing levels based on the opportunity
for future updates. In particular, this methodology is designed to
explicitly account for the correlation between call volumes across
time intervals, the cost of initially staffing agents, and the costs of
(and opportunities for) later updates to staffing levels.

For call centers, the process of determining staffing levels and
agent schedules is typically based on forecasted call volumes. The
traditional approach to call center staffing and agent scheduling
has been to use call arrival forecasts as estimates for the mean
arrival rate for a non-homogeneous Poisson process (NHPP) with
piecewise constant arrival rates over specific time intervals that
are typically 15-, 30- or 60-minutes long. However, as several
researchers (including Brown et al. [3], Steckley et al. [11], and
Taylor [12]) have noted, this level of forecast accuracy is difficult
to achieve. In particular, after analyzing a great deal of historical
data, Brown et al. [3] conclude that call center arrival rates should
be modeled as random variables rather than deterministic point
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forecasts. Similar empirical findings are presented by several re-
searchers including Avramidis et al. [1] and Steckley et al. [11],
which in turn has led these and many others (including Jong-
bloed and Koole [7], Bassamboo et al. [2], Harrison and Zeevi [5],
Whitt [13], Robbins and Harrison [10], Liao et al. [8]) to model call
arrival rates as random variables.

Finally there are two other closely related papers that deal
with call center staffing. Gans et al. [4] develop a parametric fore-
casting model along with a stochastic programming formulation
with recourse for optimally determining agent schedules in the
presence of random call arrival rates that are correlated across
intervals. Mehrotra et al. [9] present a method for optimal intra-
day recourse actions to adjust initial staffing levels in response
to statistically significant deviations from arrival-rate forecasts.
These two papers, and ours, examine staffing problemswith arrival
rate updating. Our forecast updating scheme is much simpler than
the method presented in [4]. Mehrotra et al. [9] do not present any
particular updating method (leaving the decision to the modeler).
We also address a simpler call center framework,with just one type
of caller. Due to these two differences, we can provide what are
effectively closed-form solutions to the two-stage staffing problem
for various performance measures (utilization is the only metric
discussed in detail herein, due to space constraints, but further
results appear in [14]). In contrast, themodels in [4] and [9] require
solution of more complex optimization problems. For simpler call
center settings, our model is useful in that the explicit solutions
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can be plugged more easily into larger optimization models that
may be modeling, say, company-wide costs and revenue. Which
of these three models is most useful depends on the particular
application.

Several researchers have also pointed out the need for a more
effective methodology for setting initial staffing levels given the
high level of uncertainty in call forecasts, the correlation in arrival
rates across periods within the same day, and the opportunities
for updating staffing levels in future periods based on early period
call volumes. In this paper, we offer a solution to address this
gap in the existing literature. Specifically, in this paper, we seek
to optimize staffing decisions over two stages while taking into
account randomarrival rates, cross-period arrival rate correlations,
and opportunities for intra-day staffing adjustments.

2. Two-stage staffing problem with given first-stage staffing
decision

We consider the problem of staffing a call center with a single
class of customers and a pool of homogeneous service agents.
The system manager operates under a quality-of-service (QoS)
constraint, which can be quite general. The queueingmodelwe use
to represent such a service staffing problem is an M/M/c model.
Hence we assume Poisson arrivals and i.i.d. exponential service
times. We further assume the system we study has a stochastic
arrival rate. That is, we assume that arrivals to the system occur
according to a doubly stochastic Poisson process.

The most general problem we solve is framed as follows. Con-
sider operating a call center over two time periods, and assume
that: (i) the distribution of the arrival rate for the first stage is
known or has been previously estimated; (ii) the staffing level for
the first-stage, x1, is selected at the beginning of the first stage; and,
(iii) the number of customers who arrive during the first stage, n,
is observed. We update the distribution of the arrival rate for the
second stage based onn and thenpick the staffing level, x2, for stage
two based on the updated distribution. In Section 3 we provide a
way to choose both x1 and x2. However, in this section we consider
a simpler version of the problem. In particular,we change (ii) above
and instead assume that the staffing level x1 is given.

The call center’s manager has two competing concerns. First
the manager is concerned with the staffing cost for the second
stage (we do not consider the cost for the first stage here, since
the staffing level for the first stage is given), and hence would tend
to hire as few servers in the second stage as possible. Second, the
manager is concernedwith service quality, whichwill be poor if an
insufficient number of servers are hired. In this section, we use the
function α(x2, λ) to represent any quality-of-service metric which
depends on x2 and λ. For example, this function could be the prob-
ability that a customer must wait, under a second period staffing
level x2 given arrival rate λ. To streamline mathematical analysis
we use continuous extensions of such metrics. In particular, the
staffing level is allowed to be continuous. As long as the metric
is monotone in the number of servers, an optimal solution to the
single-variable problem with a discrete decision variable follows
directly from the continuous version of the problem. We use Λ to
denote the arrival rate as a randomvariable, andweuseλ to denote
a specific realization. Without loss of generality we assume that
each server has a service rate of 1.

Let c be the unit staffing cost, c+ be the unit staffing cost
for additional service agents, and c− be the unit salvage cost for
sending unneeded service agents home early.Wemake the natural
assumption that c+ > c > c− > 0. The QoS constraint is
parameterized by ϵ which indicates the required level of service.
Let FΛ(·) be the cdf of the random arrival rateΛ. In applied settings,
FΛ is estimated fromhistorical data and represents our initial belief
regarding the arrival rate. After observing arrivals in the first stage,

this belief (distribution) is updated using the usual Bayesian frame-
work. To facilitate analysis and forecast updating, in the sequel we
assume that this prior for the call rate distribution is gamma, as
described in Section 3.

The optimizationmodel thatminimizes staffing costs subject to
the QoS constraint is then:

min
x2≥0

cx1 + c+(x2 − x1)+ − c−(x1 − x2)+ (1a)

s.t.
∫

∞

0
α(x2, λ)dFΛ(λ) ≤ ϵ. (1b)

The integral in the QoS constraint in (1) simply gives the uncon-
ditional value of this QoS metric. This formulation assumes that
the QoS metric is a quantity for which smaller values are better
(e.g., probability of waiting for service, average waiting time). Of
course, other types of QoS metrics can be transformed into this
representation.

In order to precisely state our first results, we need some
generic, relatively mild assumptions on the QoS metric of interest.
First, let A = {(x, λ) ∈ R2

+
∩ {x > λ > 0}}. In particular, the set A

characterizes the stability region of the M/M/c model (recall that
each server is assumed to have a service rate of 1). We use A′ to
denote the complement of A. The following conditions on α(x, λ)
and FΛ are used in the sequel:

(A1) α(x, λ) ≥ 0 on R2
+

and is a continuous function on A. For
all (x̄, λ̄) ∈ A′

∩ R2
+
, α(x̄, λ̄) = αmax ≥ 1. For all λ > 0,

limx↘λα(x, λ) = αmax.
(A2) On A, α(x, λ) is strictly decreasing in x for all λ > 0 and

strictly increasing in λ for all x > 0.
(A3) limx→∞

∫
∞

0 α(x, λ)dFΛ(λ) = 0.
(A4) On A, α(x, λ) is differentiable in λ and ∂α(x,λ)

∂λ
is strictly

decreasing in x for all λ > 0.
(A5) limx→∞α(x, λ) = 0 for all λ > 0, and limλ→0α(x, λ) = 0, for

all x > 0.

The function α(x, λ) represents a QoS metric at arrival rate λ
when we have x service agents. We associate higher values of the
metric with worse states of the system. Assumption (A1) implies
that the worst value of the metric is assigned when the system is
unstable, allowing for the possibility that this worst value is infi-
nite. It also ensures that stable systems can possess arbitrarily poor
metric values. Assumption (A2) ensures that the metric improves
when either the arrival rate is reduced or the number of servers is
increased. These first two assumptions hold for a variety of com-
monmetrics including probability of delay, utilization, and average
queue-length. Assumption (A3) is essentially required to ensure
that model (1) has a solution for positive values of ϵ. If FΛ has
bounded support, then this condition holds by applying (A5) and
dominated convergence. In fact, in the case of the average queue-
length metric, bounded support is necessary. If FΛ is unbounded
with finite mean, as is the case in most of our examples, then
α(x, λ) ≤ K · max(1, λ) and (A5) ensure that (A3) holds, again by
dominated convergence. This Lipschitz-style inequality holds for
utilization and metrics which are probabilities.

Although the conditions above were stated in the framework of
theM/M/c model, our results extend to othermodels with a slight
modification of the conditions. For example, theM/M/c+M model
is stable for all positive values of λ and µ, due to abandonments
from the system. In this case, we redefine A to be {(x, λ) ∈ R2

+
}

and require that (A1)–(A5) hold with the redefined set A, except
for the third part of (A1), which is no longer necessary. So, for
the M/M/c + M queue, the metric of the long-run proportion
of customers who abandon the system satisfies these conditions
and the results and algorithms in the remainder of the paper also
work for this model and metric. Computational results for the
M/M/c + M model are summarized in Zan [14].
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