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a b s t r a c t

This paper studies two polytopes: the complete set packing and set partitioning polytopes, which are both
associated with a binary n-row matrix having all possible columns. Cuts of rank 1 for the latter polytope
play a central role in recent exact algorithms for many combinatorial problems, such as vehicle routing.
We show the precise relation between the two polytopes studied, characterize themultipliers that induce
rank 1 clique facets and give several families of multipliers that yield other facets.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let A be a binary matrix with n rows and m columns. The
set packing polytope associated with A, denoted as SPP≤(A), is
defined as the convex hull of the integer solutions to the system
Ax ≤ 1, where 1 represents the n-dimensional all-ones vector
and x ∈ {0, 1}m. Such solutions are equivalent to stable sets
of the intersection graph G derived from A, i.e., a graph whose
vertices represent columns of A and whose edges indicate non-
orthogonality between the corresponding columns. Therefore, we
also denote this polytope as SPP≤(G). A closely related polytope is
the set partitioning polytope, defined analogously with respect to
the system Ax = 1.

Since the seventies, many authors have studied SPP≤(G),
proposing facet-inducing inequalities associated with specific
graphs: cliques [19], odd holes [19], odd anti-holes [18], webs [26],
anti-webs [26], K1,3-free graphs [13], wheels [9], antiweb-
wheels [10] and grilles [7]. For some graphs, such as perfect
graphs, series–parallel graphs and graphs that do not have a
4-wheel as a minor, complete characterizations of SPP≤(G) are
known [5,6,12,16]. Facet-inducing inequalities with binary coef-
ficients were studied in [3,12]. Facet-generating procedures for
SPP≤(G) were described in [4,5,7,12,18,20,24,27]. In contrast, the
set partitioning polytope is seldom studied in the literature (see
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for instance [1,2,25]) due to its more complex structure—even
computing its dimension is a NP-Hard problem.

In this paper, we study the complete set packing polytope
CSPP≤(n) and the complete set partitioning polytope CSPP=(n),
which are both associated with a binary n-row matrix A having all
possible (2n

− 1) non-zero columns. While CSPP=(n) has already
been defined in [23], as far as we know, CSPP≤(n) is studied for
the first time in this paper. However, some algorithms for the
complete set packing problemhave been proposed in the literature
(see, for instance, [17,28]). The definitions for both polytopes are
formalized as follows.

CSPP=(n) = Conv

⎧⎨⎩
2n−1∑
j=1

bjλj = 1, λ ∈ {0, 1}2
n
−1

⎫⎬⎭
CSPP≤(n) = Conv

⎧⎨⎩
2n−1∑
j=1

bjλj ≤ 1, λ ∈ {0, 1}2
n
−1

⎫⎬⎭
where bj is the column associated with the binary representation
of j. For example, if n = 3, then b1 = (1, 0, 0)T , b2 = (0, 1, 0)T ,
b3 = (1, 1, 0)T , etc. A column ei = b2

i−1
, 1 ≤ i ≤ n, is the singleton

columnassociated to row i. Let b̄j = 1−bj = b2
n
−1−j be the comple-

ment of bj. Also, we define B =
⋃2n−1

j=1 bj, the set of all columns, and
we denote a solution to the complete set partitioning (set packing)
problem by a subset s of columns whose incidence vector belongs
to CSPP=(n) (CSPP≤(n)). The incidence vector of a solution s is the
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vector
∑

bj∈sê
j, where êj is the (2n

−1)−dimensional unitary vector
such that êjj = 1.

Our study of the complete polytopes is motivated by the many
applications that can bemodeled as set packing/partitioning prob-
lems with a very large number of columns, where explicit repre-
sentation of the coefficient matrix is practically impossible and the
linear relaxations have to be solved by column generation. In this
context, any cutting plane should have a well-defined coefficient
for every possible column, since it is not possible to predict which
columns will be generated. In other words, cuts should be valid for
CSPP=(n)/CSPP≤(n).

A typical such application is the vehicle routing problem (VRP),
where one looks for aminimum cost set of routes that serve a set of
customers C. These routes should respect operational constraints,
that vary according to the considered variant. Let Ω , cr and ari
denote, respectively, the set of feasible routes, the cost of route
r , and the number of times route r visits customer i. The set
partitioning formulation of the VRP follows:

min
∑
r∈Ω

crλr (1)

s.t.
∑
r∈Ω

ari λr = 1, ∀i ∈ C, (2)

λr ∈ {0, 1}, ∀r ∈ Ω. (3)

State-of-the-art exact algorithms formanyVRPs, including itsmost
classical variants, the Capacitated VRP (CVRP) and the VRP with
Time Windows (VRPTW), are based on a combination of column
and cut generation over the above formulation. However, the ad-
dition of general cuts for CSPP=(n) has the serious drawback of
complicating a lot the pricing problem (i.e., the column generation
subproblem), making the algorithm unpractical. Jepsen et al. [15]
realized that some cuts with Chvátal–Gomory rank 1 could be
better treated in the pricing. Recently, Pecin et al. [22] introduced
the so-called limited-memory technique, for further minimizing
the impact in the pricing of rank 1 cuts. This led to big improve-
ments in the performance of exact algorithms for CVRP [22] and
VRPTW [21], more than doubling the size of the instances that can
be solved. This motivated Pecin et al. [23] to determine computa-
tionally 9 sets of rational multipliers that are capable of generating
all cuts of rank 1 that induce facets of CSPP=(n), for n ≤ 5. The
authors argued that the newmultipliers contributed decisively for
solving a previously open CVRP instance with 420 customers, the
largest classical instance ever solved. However, that computational
‘‘brute force’’ approach breaks down for n > 5.

This paper is a theoretical analysis of CSPP=(n), aimed at finding
infinite families of multipliers that produce facets for arbitrarily
large values of n. First, we prove a very strong relationship between
CSPP=(n) and CSPP≤(n) (Section 2). More specifically, we show
that, with very few exceptions, every facet-inducing inequality for
the former polytope is also facet-inducing for the latter polytope,
and vice-versa. This essentially means that the study of CSPP=(n)
can be reduced to the study of the simpler CSPP≤(n) polytope.
Second, we characterize a set ofmultipliers that can induce all rank
1 maximal clique inequalities for those polytopes (Section 3.1).
Finally, we propose 7 families of multipliers that generalize the 9
sets of multipliers found by Pecin et al. [23] and prove that they
are facet-defining (Section 3.2).

2. Properties

Definition 1. The intersection graph associated with CSPP=(n) and
CSPP≤(n), denoted as Gn, is a graph where each vertex represents
a column bj and an edge exists iff the columns represented by its
endpoints are non-orthogonal.

For a set of columns S ⊆ B, we define ⊥ (S)/̸⊥ (S) as the set
of all singleton columns that are orthogonal /non-orthogonal to all
columns in S. Let also K= be the set of the nmaximal cliques of Gn
that contain singleton columns and let K≤ be the set of all other
maximal cliques of Gn. For any maximal clique K ∈ K= ∪ K≤, the
maximal clique inequality

∑
v∈Kλv ≤ 1 is valid for both CSPP=(n)

and CSPP≤(n). Moreover, the cliques in K= define the n equalities
of CSPP=(n), that is, any point λ ∈ CSPP=(n) satisfies

∑
v∈Kλv = 1,

for all K ∈ K=.
Lemmas 1 to 3 state some basic properties of CSPP=(n) and

CSPP≤(n).

Lemma 1. CSPP≤(n) is full-dimensional and the dimension of
CSPP=(n) is 2n

− n − 1.

Proof. Since SPP≤(A) is full-dimensional [2], CSPP≤(n) is also full-
dimensional. For CSPP≤(n), consider the incidence vectors of the
following 2n

− n solutions:

• sj = {bj}∪ ⊥ ({bj}), 1 ≤ j ≤ 2n
− 1 and bj is not a singleton

column,
• s =

⋃n
k=1{e

k
},

which are clearly linearly independent. □

Lemma 2. Let aTλ ≤ a0 be facet-inducing for CSPP=(n). For every
column bj, it holds that aj ≥

∑
bi∉⊥({bj})ai.

Proof. Since aTλ ≤ a0 induces a facet, there is a set of columns
S such that {bj} ∪ S is a feasible solution and aj +

∑
bi∈Sai = a0,

otherwise aj could be increased without cutting off any feasible
solution, which is a contradiction to the facet-defining property
of aTλ ≤ a0. Hence, if aj <

∑
bi∉⊥({bj})ai, the feasible solution

̸⊥ ({bj}) ∪ S would be cut off by aTλ ≤ a0. □

Lemma 3. Any inequality aTλ ≤ a0 that is facet-inducing for
CSPP=(n) can be rewritten as αTλ ≤ α0 such that: αj = 0 for
every singleton column bj; αj ≥ 0 for every column bj; and α0 ≥ 0.
Moreover, in this form, such a facet is a valid inequality for CSPP≤(n).

Proof. This proof is algorithmic. Start with αj = aj for j =

1, . . . , 2n
− 1. For each singleton column bj, do the following. If

αj > 0, subtract αj times the equality containing bj from αTλ ≤ α0.
Ifαj < 0, add |αj| times the equality containing bj toαTλ ≤ α0. Now
that αj = 0 for every singleton column bj, it follows from Lemma 2
that αi ≥ 0 for every column bi. Moreover, α0 ≥ 0, otherwise any
feasible solution would be cut off.

Now, it remains to prove thatαTλ ≤ α0 is satisfied by any vertex
λ of CSPP≤(n). For that, let λ′ be the vertex of CSPP=(n) obtained
from λ by increasing the coordinates of singleton columns until∑

j∈Kλ′

j = 1 for allK ∈ K=. Sinceαj = 0 for every singleton column
bj, we have that αTλ = αTλ′

≤ α0. □

Next, we introduce some facet-inducing inequalities for
CSPP=(n) that are necessary to establish the main property.

Lemma 4. The non-negativity inequality λj ≥ 0 defines a facet of
CSPP=(n) iff bj is not a singleton column.

Proof. If bj is not a singleton column, then the incidence vectors of
the following 2n

−n−1 solutions satisfy λj ≥ 0 at equality and are
clearly linearly independent:

• si = {bi}∪ ⊥ ({bi}), 1 ≤ i ≤ 2n
− 1, bi ̸= bj and bi is not a

singleton column,
• s =

⋃n
k=1{e

k
}.
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