
Accepted Manuscript

An improved algorithm for online machine minimization

Yossi Azar, Sarel Cohen

PII: S0167-6377(17)30392-9
DOI: https://doi.org/10.1016/j.orl.2017.11.013
Reference: OPERES 6309

To appear in: Operations Research Letters

Received date : 17 July 2017
Revised date : 20 November 2017
Accepted date : 20 November 2017

Please cite this article as: Y. Azar, S. Cohen, An improved algorithm for online machine
minimization, Operations Research Letters (2017), https://doi.org/10.1016/j.orl.2017.11.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.orl.2017.11.013


An Improved Algorithm for Online Machine Minimization
Yossi Azar

Tel-Aviv University
Tel-Aviv, Israel
azar@tau.ac.il

Sarel Cohen
Tel-Aviv University
Tel-Aviv, Israel

sarelcoh@post.tau.ac.il

ABSTRACT
The online machine minimization problem seeks to design a pre-
emptive scheduling algorithm on multiple machines — each job j
arrives at its release time r j , has to be processed for pj time units,
and must be completed by its deadline dj . The goal is to mini-
mize the number of machines the algorithm uses. We improve the
O (logm)-competitive algorithm by Chen, Megow and Schewior
(SODA 2016) and provide an O (

logm
log logm )-competitive algorithm.

KEYWORDS
Scheduling, OnlineMachineMinimization, Competitive Ratio, Anal-
ysis of Algorithms

1 INTRODUCTION
The machine minimization problem is to schedule a set of jobs
with specified time intervals on the minimum number of machines
required. Each job j arrives at its release time r j , has to be processed
for pj time units, and must be completed by its deadline dj . The goal
is to minimize the number of machines the algorithm uses to ensure
all jobs are processed by their deadline. In the preemptive model
each processed job may be stopped and resumed later, possibly on
a different machine. In the online setting, the jobs arrive online and
the attributes (r j ,pj ,dj ) of the job are known to the algorithm at
the release time r j .

There are various well-known algorithms for scheduling jobs
on machines. For example, EDF (earliest deadline first) schedules
the jobs currently in the system which have the earliest dead-
lines. Another algorithm is LLF (least laxity first) schedules the
jobs currently in the system according to their laxities (the jobs
with the least laxities are scheduled first). At time t , a job j has laxity
ℓj (t ) = (dj −t −pj (t )) where pj (t ) is the remaining processing time
of job j at time t .

Letm be the minimum number of machines required in order
to ensure all jobs are processed by their deadline in the offline
setting, when all the jobs and their attributes (r j ,pj ,dj ) are known
in advance. In the uniprocessor case (m = 1), if there exists any
feasible schedule, then both EDF ([9]) and LLF ([8]) find feasible
solutions on a single machine. In the multiprocessor case (m ≥ 2),
any online algorithm must use more than m machines on some
inputs ([8]).

Let Pmax be the maximum processing time of a job and Pmin
be the minimum processing time of a job. Phillips, Stein, Torng,
and Wein proved in [18] that LLF is O (log Pmax

Pmin
)-competitive. They

also showed a lower bound of 5/4 on the competitive ratio for any
deterministic algorithm, leaving a huge gap of O (log Pmax

Pmin
) on the

competitive ratio of LLF. They also show that EDF does not improve
the competitive ratio by giving an Ω(log Pmax

Pmin
) lower bound on EDF.

Nearly two decades later, Chen, Megow and Schewior (SODA
2016) [4] were the first to significantly improve the competitive ratio.
They presented an algorithm which is O (logm)-competitive. In
particular, for fixedm this yields a constant competitive algorithm.
They also showed that a variant of their algorithm is constant
competitive when all jobs have processing time windows that are
either laminar or agreeable. Let I (j ) = [r j ,dj ) be the time window of
job j . In laminar instances, any two jobs j and j ′ with I (j )∩I (j ′) , ∅
satisfy I (j ) ⊆ I (j ′) or I (j ′) ⊆ I (j ). In agreeable instances, r j <
r j′ implies dj ≤ dj′ for any two jobs j and j ′. They claim that
they don’t know if the analysis of their algorithm is tight for the
general case, and ask whether one can show a better analysis which
improves their competitive ratio. Here we improve their analysis by
a log logm factor. Following our result, [14] recently improved the
competitive ratio for online machine minimization to O (log logm).

It is not known if the online machine minimization problem
admits anO (1)-competitive algorithm or not, which is an important
open problem in this field [4, 18, 19].

1.1 Our Contribution
As described above, it is a wide open question to narrow the gap
between the O (logm) upper bound and the constant lower bound
for the machine minimization problem. We go one step further in
narrowing this gap. By giving stronger lower and upper bounds on
the claims in [4], and by considering a better combination of EDF
and their algorithm, we are able to improve the competitive ratio
to O (

logm
log logm ).

An extended abstract of this paper appeared in [1].

1.2 Related Work
Recall that Phillips et al. [18] show that LLF isO (log Pmax

Pmin
)-competitive,

and Chen et al. [4] present an O (logm)-competitive algorithm.
If preemption is not allowed, then any online algorithm is Ω(n)-

competitive (See [21]). Note that for the special case of unit pro-
cessing times, preemptions are not required and the optimal non-
preemptive online algorithm has a competitive ratio of e ≈ 2.72
(See [2, 10]). This model has been studied in various papers [10, 15,
16, 21, 22] and also in the context of energy minimization [2].

Job migration is the ability to start processing a job on a machine,
and then preempt it and process it later, possibly on a different
machine. Chen, Megow and Schewior prove in [5] that migration
significantly affects machine minimization. Specifically, the number
of machines required in a non-migrative solution is unbounded as
a function ofm (the number of machines required in a migrative
solution).

Another variant, also studied by Phillips et al., considers the
setting where no additional machines are used (onlym machines
are allowed), but instead each machine is faster by a speedup factor.



Download	English	Version:

https://daneshyari.com/en/article/7543942

Download	Persian	Version:

https://daneshyari.com/article/7543942

Daneshyari.com

https://daneshyari.com/en/article/7543942
https://daneshyari.com/article/7543942
https://daneshyari.com/

