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a b s t r a c t

Design-for-frequency of mechanical systems has long been a practice of iterative procedures in order to
construct systems having desired natural frequencies. Especially problematic is achieving acoustic con-
sistency in systems using natural materials such as wood. Inverse eigenvalue problem theory seeks to
rectify these shortfalls by creating system matrices of the mechanical systems directly from the desired
natural frequencies. In this paper, the Cayley–Hamilton and determinant methods for solving inverse
eigenvalue problems are applied to the problem of the scalloped braced plate. Both methods are shown
to be effective tools in calculating the dimensions of the brace necessary for achieving a desired funda-
mental natural frequency and one of its higher partials. These methods use the physical parameters and
mechanical properties of the material in order to frame the discrete problem in contrast to standard
approaches that specify the structure of the matrix itself. They also demonstrate the ability to find
multiple solutions to the same problem. The determinant method is found to be computationally more
efficient for partially described inverse problems due to the reduced number of equations and parameters
that need to be solved. The two methods show great promise for techniques which could lead to the
design of complex mechanical systems, including musical instrument soundboards, directly from
knowledge of the desired natural frequencies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Designing mechanical systems to achieve desired frequencies has
long been a trial-and-error exercise. The approach generally involves
forward model design and iteration of design parameters until
desired frequencies are achieved. This approach, while effective, is
inefficient. A better approach would be to design the system directly
from the desired frequencies, thus a structured method is desirable.
Furthermore, iterative forward model design only works well for
typical engineered materials such as metals and plastic, which dem-
onstrate dependable mechanical properties. For systems using mate-
rials with highly variable mechanical properties, such as wood, this
iterative design approach proves to be unpractical. In essence, in
order to design-for-frequency using material specimens that demon-
strate large variations in mechanical properties, it is much easier to
design the system directly from those desired frequencies.

A small field of study, known as inverse eigenvalue problems,
attempts to address such problems. A discrete inverse eigenvalue

problem attempts to construct matrices, representative of physical
systems, directly from a set of given eigenvalues (natural frequen-
cies) [1]. Discrete inverse eigenvalue theory uses knowledge of
matrix algebra and numerical methods in order to create matrices
which yield the desired frequency spectrum (sets of eigenvalues).
Thus, using these methods, it should be possible to design a system
(represented by a set of mass and stiffness matrices) from a set of
desired frequencies.

It is well known that inverse eigenvalue problems are ill-posed,
meaning that many matrices exist which satisfy a single set of
eigenvalues [2]. In engineering, the existence of multiple solutions
could potentially be beneficial, giving the designer many design
options. However, it is important to keep in mind that in order to
ensure that a design is physically realizable, physical constraints
must be included. Most methods developed for inverse eigenvalue
problems stem from the field of structured matrix theory (e.g.
Jacobi, band matrices and other matrix forms) using proven
numerical algorithms to reconstruct unknown matrices from a full
or partial set of desired eigenvalues [3–10]. Thus the typical
approach is to limit the number of solutions by framing the inverse
problem within a pre-determined matrix structure. Although
structured matrices generally imply various physical constraints,
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very few methods exist for matrices which have a more general
form. One of the goals of this paper is to demonstrate the use of
the recently proposed inverse eigenvalue technique using the
Cayley–Hamilton theorem [11]. This approach is particularly
interesting because it enables the solution of any matrix structure.
Thus, the solution of any matrix can be obtained from a set of
eigenvalues and applying the physical constraints to the matrix
structure becomes an exercise in the forward modeling process.
The system can then be limited by the material of choice rather
than a certain matrix structure.

From the Cayley–Hamilton theorem method, we derive a
second method, which we refer to as the determinant method
and which will be explained herein. In certain situations, including
the problem presented in this paper, only a select few frequencies,
as opposed to the full spectrum, are required to be specified. These
problems are known as partially described problems. The determi-
nant method approach has the benefit of solving partially
described systems using fewer equations.

In this paper, we apply the Cayley–Hamilton theorem method,
as well as the determinant method to the problem of designing a
scalloped shaped brace on a simple rectangular plate in order to
achieve desired system frequencies. This brace-plate model is cho-
sen to demonstrate the validity of the methods because it has been
previously analyzed to examine the effects of the scalloped brace
on the natural frequencies of a brace-soundboard system [12]
and thus the forward problem is well understood. In the prior
paper, the dimensions of the brace were adjusted by trial and error.
In this paper, structured methods will be used to calculate the
requisite dimensions of the scalloped brace required in order to
achieve the desired system frequencies. Results are then validated
by comparison to those previously presented.

2. Model

2.1. The mechanical system

The model used during the analysis is based on a typical section
of a guitar soundboard structurally reinforced by a single brace
along the weaker grain direction and first developed in [12] to
explore the effects that a scalloped shaped brace has on the fre-
quencies of a system. The layout of the model is shown in Fig. 1.

Since this prior paper demonstrated that scalloped-shaped
braces typically used by musical instrument makers can be used
to control two natural frequencies of the combined brace-plate
system simultaneously, the same brace shape will be used herein.
A scalloped shaped brace can be seen in Fig. 2.

2.2. Problem statement

The problem we seek to solve can be stated as follows: calculate
the dimensions of the scalloped brace so that the brace-plate

system, described by a mass matrix M and a stiffness matrix K,
has a specified given fundamental frequency and a specified higher
partial (two frequencies specified) as the radial stiffness of the
plate (ER) varies. The variation of the radial stiffness of the plate
is the means by which we model the natural occurring speci-
men-to-specimen variations in the material properties of wood.
Although the methods presented herein work when any number
of mechanical properties are varied. Thus, for a plate specimen
with a given radial stiffness, we demonstrate how to calculate
the corresponding requisite brace dimensions that will ensure
two frequencies in the plate’s spectrum are at specified values.

Since the model presented in [12] is made of wood, all mechan-
ical properties of the system are assumed to be a function of the
material radial stiffness ER, which is assumed known and given
but which tends to vary from specimen to specimen. This inter-
specimen variation of the radial stiffness is the cause of acoustic
inconsistencies in the manufacture of musical instruments in spite
of tight dimensional manufacturing tolerances [13]. All dimen-
sional (geometric) properties of the brace-plate system are
assumed to be specified and fixed except for the base thickness
of the brace hbo and the scallop peak height adjustment factor k,
the design variables to be calculated.

2.3. Forward model

Rather than choosing a pre-determined matrix structure, the
shape of the matrix is defined through the process of constructing
a forward system model, taking into account the fixed geometric
and mechanical properties of the physical system, but leaving as
variables to be solved the parameters that remain under the con-
trol of the designer.

Although any discretization method could be used, following on
our prior paper, the assumed shape method is used to discretize
the forward model. The assumed shape method is intended as a
theoretical model for generating the M and K matrices in order to
demonstrate the inverse methods presented in Sections 2.4.1 and
2.4.2. The assumed shape method is an energy method which
applies global elements to the kinetic and strain energy equations
in order to determine the mass and stiffness matrices representa-
tive of the system [14]. The kinetic energy of a conservative, simply
supported orthotropic Kirchhoff plate is used. Although this is an
accurate assumption for the plate, it may imply a certain error at
the location of the brace where thicker plate theories may be more
appropriate. The kinetic energy is separated into three sections in
order to take into account the presence of the brace, as shown in
Fig. 1, and is given by
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where Lx and Ly are the dimensions of the plate in the x and y
directions respectively. The dot above the transverse displacement
variable w represents the time derivative, q is the mass per unit
area of the plate such that

qp ¼ l � hp and qc ¼ l � hc; ð2Þ

l is the material density and hp and hc are the thickness of the plate
and combined brace-plate sections, respectively.Fig. 1. Orthotropic plate reinforced with a scalloped brace.

Fig. 2. Shape of a scalloped brace.
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