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a b s t r a c t

The transfer-current theorem is a well-known result in probability theory stating that
edges in a uniform spanning tree of an undirected graph form a determinantal processwith
kernel interpretable in terms of flows. Its original derivation due to Burton and Pemantle
(1993) is based on a clever induction using comparison of random walks with electrical
networks. Several variants of this celebrated result have recently appeared in the literature.
In this paper we give an elementary proof of an extension of this theorem when the
underlying graph is directed, irreducible and finite. Further, we give a characterization of
the corresponding determinantal kernel in terms of flows extending the kernel given by
Burton–Pemantle to the non-reversible setting.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Given a recurrent connected undirected finite graph G, the Uniform Spanning Tree (UST ) is a random spanning tree on the 2

graph sampled uniformly among all possible spanning trees. The analysis of this object can be traced back at least to thework 3

of Kirchhoff (1847)where the number of spanning trees of a graphwas characterized in terms ofminors of the corresponding 4

discrete Laplacian matrix (matrix-tree theorem). In the last decades, UST has been playing a central role in probability and 5

statisticalmechanics due to its deep connectionwithMarkov chain theory and its relation to a number of challenging random 6

combinatorial objects of current interest (e.g. loop erased random walks, percolation, dimers, sandpile models). We refer 7

to Benjamini et al. (2001), Grimmett (2010), Le Jan (2011), Lyons and Peres (2017), Levin et al. (2008) for an overview on 8

the vast literature on the subject. One of the main features making this object particularly interesting is its determinantal 9

nature, namely, local statistics have a closed-form expression in terms of determinants of certain kernels. Determinantal 10

processes are examples of integrable systems (systems allowing for explicit computations) which are currently receiving 11

much attention within the statistical physics and mathematics community, cfr. e.g. Hough et al. (2006) and references 12

therein. In particular, for the UST , the celebrated transfer-current theorem of Burton and Pemantle (1993) states that the 13

corresponding random edges form a determinantal process. That is, for any finite collection of disjoint (undirected) edges 14

Ak = {e1, . . . , ek} in the graph, we have 15

P (e1, e2, . . . , ek ∈ UST ) = det [J ]Ak , (1.1) 16
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where J is the symmetric square matrix with rows and columns indexed by the edges in G, whose entries J (e, e′), for any1

pair of edges e, e′ are defined as follows. Fix an arbitrary orientation of the edges of the given graph G, for edges e =
−→xy and2

e′ of G, J (e, e′) denotes the expected signed number of crossings of e′ by the randomwalk associated to the graph (see (2.1))3

started at x and stopped when it hits y. The notation [J ]Ak stands for the matrix J restricted to its elements doubly indexed4

in Ak. The matrix J is often referred to as the transfer-current kernel. Several variants and extensions to directed and/or5

infinite settings of this result have been recently obtained either by using the well-known comparison of Markov chains6

with electrical networks (see Doyle and Snell, 1984) or by algebraic approaches based e.g. on the Cauchy–Binet formula (see7

e.g. Pitman and Tang, 2018; Forman, 1993; Kenyon, 2017; Kassel and Wu, 2015). In this paper we give a new proof of the8

extension of the Burton–Pemantle transfer-current theorem in a directed weighted finite graph. In particular, we derive an9

original expression for the related kernel generalizing J in (1.1) and its flow representation.10

2. Result: non-reversible transfer-current11

Graph. Let G = (V, E,W) be a finite irreducible1 directed weighted graph, where V denotes the vertex set, E the set of12

oriented edges, and W = {w(e) ≥ 0 : e ∈ E} a collection of non-negative weights on the (oriented) edges. We denote by13

|V| < ∞ the corresponding number of vertices. For an oriented edge e =
−→xy ∈ E , wewrite e− = x and e+

= y for its starting14

and ending points, respectively.15

Random Walk. Associated to the given graph G, we consider the continuous-time random walk X = (X(t))t≥0 with state16

space V and infinitesimal generator17

(Lf )(x) =

∑
y∈V

w(x, y)[f (y) − f (x)], x ∈ V, (2.1)18

for arbitrary f : V → R. Let µ be the unique probability measure on V stationary for the random walk X . Note that the19

existence and uniqueness is guaranteed by the finiteness and irreducibility assumptions on the graph. We will denote by Px20

and Ex, respectively, the law and expectation w.r.t. the random walk X starting at x ∈ V .21

Random Spanning Trees. For x ∈ V , let RT (x) ⊂ E be the set of spanning trees on G rooted at x. That is, the set of acyclic22

connected oriented subgraphs of G covering V , with a marked point x declared to be the root of the tree, where edges are23

oriented towards this root. We then denote by RT =
⋃

x∈VRT (x) the set of rooted spanning trees on G, and for an element24

τ ∈ RT , by r[τ ] ∈ V its root. We can finally define the probability measure on RT we are interested in, which represents25

the natural extension of the usual uniform spanning tree measure to a directed weighted graph.26

Definition 2.1 (Generalized random spanning tree measure).27

Let Q := {q(x) > 0 : x ∈ V} be an arbitrary given collection of positive numbers, we call random spanning tree measure28

the probability measure on RT :29

νQ (τ ) =
w(τ )q (r[τ ])

ZQ
, τ ∈ RT (2.2)30

wherew(τ ) =
∏

e∈τw(e) is the weight of the tree τ , and ZQ =
∑

τ∈RTw(τ )q (r[τ ]) is a normalizing constant. Wewill denote31

by τQ a random variable with values in RT and law νQ .32

Remark 2.2 (Sampling and Wilson’s algorithm).33

Wilson’s algorithm, cfr. Wilson (1996), is a by now classical randomized procedure based on killed loop-erased random34

walks to generate random spanning trees rooted at a given vertex. It follows from the Markov chain tree theorem that τQ is35

the random spanning rooted tree obtained by runningWilson’s algorithm (see e.g. Wilson, 1996; Chang, 2013)when the root36

is chosen with probability q(x)µ(x)∑
zq(z)µ(z) , x ∈ V. Notice that in case q(x) ≡ 1 the root is sampled from the stationary measure µ.37

Chang (2013), Thm 5.3.3, has recently showed that τQ is a determinantal process but his representation does not allow for38

a comparisonwith the original kernelJ in (1.1) . The goal of this paper is to fill this gap,wewill re-derive the determinantality39

of τQ providing a new proof, but more importantly, we give a kernel interpretable in terms of flows. In order to state our40

result, let us introduce some notation.41

Flows. For x, y in V and e in E we define:42

J+y (x, e) = Ex

[∫ Hy

0
1{X(t)=e−}dt

]
w(e), (2.3)43

as the expected number of crossings of the (oriented) edge e by the process X started from x and stopped at the hitting time44

of y: Hy = inf{t ≥ 0 : X(t) = y}. We also define the net flow through e by45

Jy(x, e) = J+y (x, e) − J+y (x, −e), (2.4)46

where −e =
−−→e+e− for e =

−−→e−e+.47

1 For any pair (x, y) of vertices in V there exists a direct path of successive neighboring edges starting from x and ending in y.
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