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a b s t r a c t

Let us consider a discrete-time n-dimensional stochastic process z, with components
x = (x1, . . . , xm1 )

′ and y = (y1, . . . , ym2 )
′, m1 + m2 = n. We want to study causality

relationships between the variables in x andy. Suppose that we find that y Granger causes
x. Then we would expect to be able to pick out at least one of these variables, say yj, having
a causal impact on x. It turns out that, when we consider the conditioning information set
defined by the past observations of x and all the yi, i ̸= j, it may be that yj has no causal
impact on x, irrespective of the particular j = 1, 2, . . . ,m2 that we tried to pick out. This
is a puzzling property. The paper provides a condition under which this property cannot
hold.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The concept of Granger causalitywas first introduced byWiener (1956) and later reformulated and formalized byGranger
(1969). A precise statement of this notion can be made in different ways. In this paper we will adopt the definition of
noncausality used by Dufour and Renault (1998).

It is well known that the Granger causal links are sensitive to the information sets which are employed in the analysis.
Changing the conditioning information sets, for example by extending or reducing the number of time series in the study,
may lead to different Granger causal links. A causal statement is never intrinsic but always relative to given information sets.
There is an extensive literature on these topics. Pertinent general theoretical discussions and developments are provided in:
Lütkepohl (1982), Dufour and Renault (1998), Triacca (1998), Hosoya (2001), Giles (2002), Eichler (2007), Hill (2007) and
Al-Sadoon (2014).

The contribution of this paper is to investigate a particular form of lack of invariance of causality statements to changes
in the conditioning information sets. Let us consider a discrete-time n-dimensional stochastic process z, with components
x = (x1, . . . , xm1 )

′ and y = (y1, . . . , ym2 )
′, m1 + m2 = n. We want to study causality relationships between the variables in

x and y.
Suppose that we find that y Granger causes x. Then we would expect to be able to pick out at least one of these variables,

say yj, having a causal impact on x. It turns out that, when we consider the conditioning information set defined by the
past observations of x and all the yi, i ̸= j, it may be that yj has no causal impact on x, irrespective of the particular
j = 1, 2, . . . ,m2 that we tried to pick out. This kind of counter-intuitive result reveals some flaw in our way to tackle the
causality analysis. Generally, the causal structure of a multivariate stochastic process does not allow conclusions concerning
the causal structure of its subprocesses. Formally, this puzzling property has been established by Dufour and Renault (1998,
p. 1105). Recently, Renault and Triacca (2015) have provided a condition (of global separability), regarding the causal
variables y = (y1, . . . , ym2 )

′, under which this property does not hold and hence the causal structure of a multivariate
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stochastic process depends on the causal structure of its subprocesses and vice versa. However, a problem with this notion
of global separability is that it appears to be a high-level assumption without great intuitive underpinning.

The goal of this paper is to find a condition sufficient for the global separability, but with a more primitive interpretation.
In particular, we will prove that the global separability is implied by a condition concerning the distance between the
information sets used in the definition of Granger causality.

The set-up used in this paper borrows heavily from Dufour and Renault’s (1998) framework for Granger causality. Thus,
the presented results are obtained for processes in L2 (i.e., processeswith finite secondmoments),without any assumption on
stationarity or specific parametric forms. However, it is important to underline thatworking in L2 has enormous implications
for causal structures. The findings are intimately linked to the structure of Hilbert spaces. That is, working in L2 without
restrictions on stationarity or function form is still a major restriction (see Hill (2006)).

The paper is organized as follows. In Section 2, we introduce the necessary notation and definitions. The main results are
presented in Section 3.

2. Notation and definitions

Let L2 = L2(Ω,A, P) be the Hilbert space of the real square-integrable random variables, defined on common probability
space (Ω,A, P) and let E be the expectation operator in this space. We define the inner product by ⟨u, v⟩ = E(uv) for all
u, v ∈ L2 and the norm to be ∥u∥2

= ⟨u, u⟩ for all u ∈ L2. A non-empty subset M of L2 is called a (linear) manifold if for all
u, v ∈ M and all scalars α1, α2, we have α1u+α2u ∈ M .M is called a subspace, if it is a closedmanifold, that is it contains the
limit of every Cauchy sequence inM . The smallest subspace of L2 which containsM , denoted by span(M), is called subspace
spanned by M . For any two subspaces M and N of L2, we will denote M ∨ N the subspace spanned by the elements of M
and N, that is M ∨ N = span(M ∪ N). Further, following the mathematics literature, we use M + N to denote the set of all
elements of the form u + v with u ∈ M and v ∈ N . It is important to note that the vector sum of two subspaces can fail to
be a subspace (Halmos, 1957, Section 8.6). The vector sum of a sequence {Mi} of subspaces, in symbols

∑
iMi, is the set of all

vectors of the form
∑

iui with ui ∈ Mi for all i. Let A and B be nonempty subsets of L2. The distance between A and B, denoted
d(A, B), is defined as follows:

d(A, B) = inf {∥a − b∥ ; a ∈ A, b ∈ B} .

For a subspaceM of L2, its unit sphere, denoted S(M), is the set

{m ∈ M : ∥m∥ = 1} .

Now, we consider a nondecreasing sequence I of subspaces I(t) of L2,

I = {I(t); t ∈ Z, t > ω} and t < t ′ ⇒ I(t) ⊆ I(t ′) ∀t > ω,

where ω ∈ Z ∪ {−∞} represents a ‘starting point’. The ‘starting point’ ω is typically equal to a finite initial date (such as
ω = −1, 0 or 1) or to −∞; I(t) is said the ‘reference information set’. Let x be anm1 × 1 vector process in L2, that is

x = {x(t); t ∈ Z, t > ω} , x(t) =
(
x1(t), . . . , xm1 (t)

)′
, xi(t) ∈ L2 (i = 1, . . . ,m1).

We suppose that the information sequence I is conformable with x, that is

x(ω, t] ⊆ I(t) ∀t > ω

where x(ω, t] is the subspace spanned by the components xi(τ ), i = 1, . . . ,m1 of x(τ ), ω < τ ≤ t . Let V be a subspace
of L2, for any positive integer h we denote P [xi(t + h)|V ] the orthogonal projection of xi(t + h) on V and P [x(t + h)|V ] =(
P [x1(t + h)|V ] , . . . , P

[
xm1 (t + h)|V

])′. Now, we consider anm2 × 1 vector process y in L2, that is

y = {y(t); t ∈ Z, t > ω} , y(t) =
(
y1(t), . . . , ym2 (t)

)′
, yi(t) ∈ L2 (i = 1, . . . ,m2).

Wewill consider also the following subspaces of L2: y(ω, t] the subspace spanned by the components yi(τ ), i = 1, . . . ,m2 of
y(τ ),ω < τ ≤ t; yj(ω, t] the subspace spanned by

{
yj(τ ); ω < τ ≤ t

}
; y(j)(ω, t] the subspace spanned by {yi(τ ); ω < τ ≤ t,

i = 1, . . . ,m2, i ̸= j} .

Following Dufour and Renault (1998) we now give the following definitions of noncausality.

Definition 1 (Noncausality at Different Horizons). For h ∈ N, we say that: (i) y does not cause x at horizon h given I (denoted

y
h

̸→ x|I) if

P(x(t + h)|I(t)) = P(x(t + h)|I(t) ∨ y(ω, t]) ∀t > ω;

(ii) yj does not cause x at horizon h given I (j)(t) = I(t) ∨ y(j)(ω, t] (denoted yj
h

̸→ x|I (j)) if

P(x(t + h)|I (j)(t)) = P(x(t + h)|I(t) ∨ y(ω, t]) ∀t > ω;
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