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a b s t r a c t

The vast increase in size of modern spatio-temporal data sets has prompted statisticians
working in environmental applications to develop new and efficient methodologies that
are still able to achieve inference for nontrivial models within an affordable time. Climate
model outputs push the limits of inference for Gaussian processes, as their size can easily
be larger than 10 billion data points. Drawing fromour experience in a set of previouswork,
we provide three principles for the statistical analysis of such large data sets that leverage
recent methodological and computational advances. These principles emphasize the need
of embedding distributed and parallel computing in the inferential process.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Data indexed in space and time for environmental applications have been greatly affected by the Big Data revolution. In 2

particular, the increases in Volume, Variety, and Velocity (the three vs. of Big Data) have prompted statisticiansworkingwith 3

spatio-temporal models to seek newmethodologies and inferential approaches that combine flexibility with feasibility, and 4

that leverage the latest advances in hardware and computer science. 5

In the case of Gaussian data in space and time, it is well known that a likelihood for a data set of size N requires O(N2) 6

entries to store the covariance matrix and O(N3) flops to evaluate a log-determinant and a quadratic form. While most 7

of the literature has traditionally focused on reducing the number of flops, the real constraint for fitting very large data 8

sets is the storage of structured dependence in space and time. For example, storing a covariance matrix of 50,000 data 9

points, which represents a standard-to-small data set in many environmental applications, in double precision requires 10

(50, 000)2 × 8/(1024)3 ≈ 19 Gb. Very few computers have sufficient RAM to store and perform operations with such 11

matrices and hence to perform the linear algebra operations required to evaluate the likelihood. 12

Performing inference for very large data sets clearly requires more structure and assumptions on the statistical model in 13

order to reduce the information to a more manageable scale. Low-rank methods seek to find a suitable subspace from the 14

original space–time model where most of the information about the process is contained (Cressie and Johannesson, 2008). 15

An important variant is the predictive process, which couples a low-rank method with a conditional approach (Banerjee 16

et al., 2008). Other methods encourage sparsity either in the covariance matrix by tapering (Furrer et al., 2006) or in the 17

precisionmatrix with GaussianMarkov random fields (Rue and Held, 2005). A powerfulmethodology has emerged in recent 18

years that enforces sparsity in the precision matrix by expressing the spatio-temporal process as a solution of a stochastic 19

partial different equation (Lindgren et al., 2011). All of the aforementioned methods allow the statistical community to still 20

perform inference for space–timemodels despite the ever-increasing size of data, and hence to be able to serve practitioners 21

despite increasing computational challenges; see the review by Sun et al. (2012) and references therein. 22
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In this work, we focus on the very end of the spectrum in terms of data size, i.e., on data sets generated from climate1

model ensembles, which are typically between 100 million to 10 billion points, and we provide three general principles2

that enable us to perform inference for nontrivial models within a reasonable time. These principles have emerged from a3

series of recent works on inference from extremely big spatio-temporal data (Castruccio and Stein, 2013; Castruccio and4

Genton, 2014; Castruccio, 2016; Castruccio and Genton, 2016; Castruccio and Guinness, 2017; Jeong et al., 2018) and ascribe5

to the general philosophy of the methods previously described, i.e., reduction of the information by exploiting the structure6

of a particular problem. These principles advocate designing a statistical model that fully leverages on parallel and high7

performance computing. While developed for climate model output, their reach extents well beyond this area, and they8

have already been applied to very large space–time data in neuroscience (Castruccio et al., 2018). We present and discuss9

this work in a frequentist setting, but most of the concepts can also be applied in a Bayesian setting.10

The paper proceeds as follows: Section 2 presents an example of a typical data set, Section 3 introduces the three11

principles, and Section 4 ends with a discussion about their general applicability and limitations.12

2. Big climate model output13

Climate models can generate data sets of extremely large size. As an example, we take the Large ENSemble (LENS),14

a collection of 35 runs from the Community Atmosphere Model from the National Center for Atmospheric Research15

(NCAR) (Kay et al., 2015). We consider relatively low resolution in time, e.g., monthly values of some physical quantity Yr16

for a run r , and assume that the data are on a regular N ×M ×H grid, where N is the number of longitudinal bands,M is the17

number of latitudinal bands, H is the number of pressure levels, and the resolution is approximately 1 degree in latitude and18

longitude.Here,N = 288,M = 192, andH = 17.We consider all 35 realizations from the LENS, rununder theRepresentative19

Concentration Pathways 8.5 (RCP 8.5, van Vuuren et al. (2011)) scenario with high greenhouse gas emissions, from 2006 to20

2100, for a total ofK = 95×12 = 1140months. The resulting data set is comprised of 192×288×1140×17×35 ≈ 10 billion21

data points. To simplify the notation in the rest of the paper, we assume that the data are only observed over latitude and22

longitude, though similar principles also hold for three-dimensional data (Castruccio and Genton, 2016).23

3. Three principles24

In this section, we detail our principles for statistical inference from large data sets. Section 3.1 introduces conditional25

independence across runs and its implications, Section 3.2 presents the stepwise approach for optimizing high-dimensional26

functions, and Section 3.3 discusses the spectral approach and its benefits in terms of computation and storage.27

3.1. Conditional independence and restricted maximum likelihood28

Principle 1:When possible, use conditional independence across data sets to decouple inference for themean and the error.Despite29

the very large quantity of data, the structure of the LENS facilitates inference. Indeed, we assume that30

Yr = µ + εr , εr ∼ N (0,Σ), (1)31

which implies that each run is independent of the others, conditional on the climateµ. The assumption of random fluctuation32

around a climatological mean is rooted in the deterministically chaotic nature of climate models (Lorenz, 1963). Collins33

(2002), Collins and Allen (2002), and Branstator and Teng (2010) discussed this assumption in different contexts. Since34

atmospheric processes mix efficiently, they comply well with assumption in (1); slow-mixing processes such as deep ocean35

temperature, on the other hand, are not guaranteed this property.36

Conditional independence allows us to decouple the estimations of µ and εr without incurring additional computational37

costs. If we assume that the covariance matrixΣ = Σ(θ) and contrasts are denoted by Dr = Yr − Ȳ, where Ȳ = 1/R
∑R

r=1Yr ,38

then the negative restricted log-likelihood function can be written as follows (Castruccio and Stein, 2013):39

2l(θ;D) = KNM(R − 1)log(2π ) + KNMlogR + (R − 1)log|Σ(θ)| +

R∑
r=1

D⊤

r Σ(θ)−1Dr , (2)40

which leads to a restricted maximum likelihood (REML) estimator of θ.41

This expression (2) allows us to focus on the inference of εr without providing any (parametric or nonparametric)42

expression for µ. Moreover, the evaluation of the restricted log-likelihood function is no more computationally onerous43

than the likelihood; it requires an evaluation of the quadratic forms in Dr instead of Tr , and each quadratic form can be44

evaluated in parallel by different cores of a workstation or cluster.45

3.2. Stepwise inference46

Principle 2: Stepwise inference.When the data set is very large and possibly indexed on a complex geometry, the simultaneous47

estimation of the model parameters is prohibitive. Since the model complexity generally increases with the data size (e.g., a
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