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a b s t r a c t

We propose and study a right-preconditioned inexact Newton method for the numerical solution of large
sparse nonlinear system of equations. The target applications are nonlinear problems whose derivatives
have some local discontinuities such that the traditional inexact Newton method suffers from slow or no
convergence even with globalization techniques. The proposed adaptive nonlinear elimination precondi-
tioned inexact Newton method consists of three major ingredients: a subspace correction, a global
update, and an adaptive partitioning strategy. The key idea is to remove the local high nonlinearity before
performing the global Newton update. The partition used to define the subspace nonlinear problem is
chosen adaptively based on the information derived from the intermediate Newton solution. Some
numerical experiments are presented to demonstrate the robustness and efficiency of the algorithm com-
pared to the classical inexact Newton method. Some parallel performance results obtained on a cluster of
PCs are reported.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The class of inexact Newton method (IN) [8,15] is popular for
solving large sparse nonlinear system of equations arising from dis-
cretization of partial differential equations (PDEs). IN is quite robust
and efficient for smooth nonlinear problems, but if the solution of
the problem or its derivatives has certain discontinuity, the conver-
gence rate of IN degrades, and the method may fail to converge even
used together with globalization techniques, such as linesearch or
trust region [8,15]. Such problems appear often in computational
fluid dynamics involving, for examples, shock waves, boundary lay-
ers, and corner singularities. To overcome the problem, we develop
a nonlinear preconditioning technique in this paper.

Nonlinear preconditioning can be applied on the left or on the
right of the nonlinear function. The basic idea of left preconditioning
is to change the function of the system to a more balanced system
and then solve the new system by IN. The additive Schwarz precon-
ditioned inexact Newton algorithm (ASPIN) [3,11] belongs to this
class. ASPIN has been applied successfully to incompressible high
Reynolds number flows [3,4,6,11,12], transonic compressible flows
[5,13,20], flows in porous media [19], unconstrained optimization
problems arising in nonlinear elasticity problems [9], and image
processing [22]. On the other hand, right preconditioning is to

modify the variable of the nonlinear system. For example, Hwang
et al. [13] employs a nonlinear elimination (NE) technique [14] as
a right preconditioner for a quasi one-dimensional shocked duct
flow calculation. The key idea of NE is to implicitly remove these
components that cause trouble for IN. In order to use the algorithm
proposed in [13], one has to assume that the components to be elim-
inated are known in advance. However, in practice it may not always
be possible to determine these components. The main contribution
of this paper is to propose a new algorithm, namely an adaptive non-
linear elimination (ANE) preconditioned inexact Newton method
that does not require this assumption. In the proposed algorithm,
we use the intermediate IN solution to identify these components
to be eliminated before a new global IN iteration. One potential
application of the proposed algorithm is for the time-dependent
PDE problems solved by a fully implicit scheme. In this paper, we
focus only on a steady-state problem, namely the full potential
equation in two different computational domain. The subspace cor-
rection phase can be done before a global Newton iteration is per-
formed so that the overall performance of IN-based kernel solver
is improved.

The rest of the paper is organized as follows. The next section
describes the full potential equation discretized using a finite dif-
ference method with density upwinding. Section 3 provides a
detailed description of the proposed algorithm. Section 4 presents
the numerical results, including parallel performance of the pro-
posed algorithm. Section 5 summarizes the main contributions of
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this paper and points out some potential applications of the
algorithm.

2. Full potential flow equation and its discretization

We consider the full potential flow equation [10,18], which is
often used for modeling transonic flows passing an airfoil,

r � ðqð/Þr/Þ ¼ 0; ð1Þ

where / is the velocity potential, ðu1;u2Þ ¼ r/ is the velocity field,
and the density function q is given as

qð/Þ ¼ q1 1þ c� 1
2

M2
1 1� kr/k2

2

q2
1

 ! !1=ðc�1Þ

: ð2Þ

Here, c ¼ 1:4 is the specific heat for air. The constants q1, M1 and
q1 represent the density, the Mach number, and the speed at the far
field, respectively. In this work, two test cases, namely a flow pass-
ing the NACA0012 airfoil case [2,18], and a channel flow passing
through a circular bump [7,16].

The geometrical configuration for a transonic flow passing the
NACA0012 airfoil is shown in the left figure of Fig. 1, where the
computational domain is ½0;1� � ½0;1� and the shape of the
NACA0012 model is described by the function

f ðxÞ ¼ 0:17814ð
ffiffiffi
x
p
� xÞ þ 0:10128ðxð1� xÞÞ � 0:10968x2ð1� xÞ

þ 0:06090x3ð1� xÞ;

for x 2 ð0;1Þ and then re-scaled into ½1=3;2=3� through x ¼ 3t � 1,
for t 2 ½1=3;2=3�. The boundary conditions are specified as follows.

1. / ¼ 0 on the inflow boundary C6;/ ¼ q1 on the outflow bound-
ary C4, and the freestream boundary on C5, which are described
by / ¼ /1 ¼

R
x q1 dx. The freestream speed q1 is normalized to

be 1.
2. A homogenous Neumann boundary condition is imposed on C1,

and C3, i.e., @/
@y ¼ 0. This condition implies that the flow is sym-

metric with respect to the boundaries and no flow penetrate
through the boundaries.

3. A transpiration boundary condition is given on C2 by
@/
@y ¼ �q1f 0ðxÞ.

As a second example, we consider a channel flow as shown in
the right figure of Fig. 1. The computational domain is defined as

½�1:0;4:0� � ½0:0;2:073�. The shape of the bump is described by
the function.

f ðxÞ ¼ 4txð1� xÞ

for 0 6 x 6 1; t ¼ 0:042. The settings of the boundary conditions are
similar to the airfoil case, except that the freestream boundary con-
dition on C5 is replaced by a homogenous Neumann boundary con-
dition as on C1 and C3 and / ¼ 0 and / ¼ 1 on C6 and C4,
respectively.

To discretize (1) by a finite difference method with density
upwinding [10], we begin by introducing a set of mesh points,
ðxi; yjÞ;0 6 i 6 nx and 0 6 j 6 ny with the mesh size hx ¼ lx=nx and
hy ¼ ly=ny, where lx and ly are the lengths of the computational
domain in the x- and y-directions, respectively. Let U ¼ ½/i;j�

T be
the numerical approximations at mesh points (including the
Dirichlet and Neumann boundary points) in the natural ordering.
We denote xiþ1=2 and yiþ1=2, as the midpoints of subintervals
½xi; xiþ1� and ½yj; yjþ1�, respectively. We discretize the full potential
Eq. (1) at the interior point ðxi; yjÞ using a second-order centered
finite difference method, i.e.,

FIðUÞ � hy qiþ1
2;j
ðu1Þiþ1

2;j
� qi�1

2;j
ðu1Þi�1

2;j

h i
þ hx qi;jþ1

2
ðu2Þi;jþ1

2
� qi;j�1

2
ðu2Þi;j�1

2

h i
¼ 0;

where the velocity components u1 and u2 at ðxiþ1=2; yjÞ and
ðxi; yjþ1=2Þ, respectively, are approximated as

ðu1Þiþ1=2;j � ð/iþ1;j � /i;jÞ=hx ð3Þ
ðu2Þi;jþ1=2 � ð/i;jþ1 � /i;jÞ=hy ð4Þ

and ðu1Þi�1=2;j and ðu2Þi;j�1=2 are approximated similarly. For purely
subsonic flows, using (2) for calculating the flow density at
ðxi�1=2; yjÞ and ðxi; yj�1=2Þ, i.e., qi�1=2;j ¼ qðkqki�1=2;jÞ and
qi;j�1=2 ¼ qðkqki;j�1=2Þ, is sufficient. Here,

qiþ1=2;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2iþ1=2;j þ ðu2Þ2iþ1=2;j

q
and qi;jþ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1Þ2i;jþ1=2 þ ðu2Þ2i;jþ1=2

q
with ðu1Þiþ1=2;j and ðu2Þi;jþ1=2 defined as (3) and (4), and

ðu2Þiþ1=2;j � ð/iþ1;jþ1 þ /i;jþ1 � /iþ1;j � /i;jÞ=ð2hyÞ
ðu1Þi;jþ1=2 � ð/iþ1;jþ1 þ /iþ1;j � /i;jþ1 � /i;jÞ=ð2hxÞ:

However, for transonic flows, this formulation needs to be modified
in order to capture the shock. By applying a first-order density
upwinding scheme as suggested by Young et al. [2,21], a modified

Fig. 1. The geometrical configuration for the airfoil problem (left) and the internal channel flow with a circular bump problem (right).
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