
Sliding mode tracking control for miniature

unmanned helicopters

Xian Bin *, Guo Jianchuan, Zhang Yao, Zhao Bo

The Institute of Robotics and Autonomous System, Tianjin Key Laboratory of Process Measurement and Control,
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China

Received 20 February 2014; revised 13 June 2014; accepted 9 September 2014
Available online 27 December 2014

KEYWORDS

External disturbance;

Nonlinear numerical

simulation;

Sliding mode control;

Stability analysis;

Unmanned helicopter

Abstract A sliding mode control design for a miniature unmanned helicopter is presented. The

control objective is to let the helicopter track some predefined velocity and yaw trajectories. A

new sliding mode control design method is developed based on a linearized dynamic model. In

order to facilitate the control design, the helicopter’s dynamic model is divided into two subsystems,

such as the longitudinal-lateral and the heading-heave subsystem. The proposed controller employs

sliding mode control technique to compensate for the immeasurable flapping angles’ dynamic

effects and external disturbances. The global asymptotic stability (GAS) of the closed-loop system

is proved by the Lyapunov based stability analysis. Numerical simulations demonstrate that the

proposed controller can achieve superior tracking performance compared with the proportional-

integral-derivative (PID) and linear-quadratic regulator (LQR) cascaded controller in the presence

of wind gust disturbances.
ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

1. Introduction

Compared with the fixed-wing unmanned aerial vehicles

(UAVs), unmanned helicopters have significant advantageous
characteristics of hovering, take-off and landing vertically,
low altitude flight and multi-attitude flight. These qualities
have made them suitable for a variety of military and civilian

applications. The unmanned helicopter is a special vehicle,

which is a dynamic system of 6 degrees of freedom (6-DOF),
underactuated, multiple-input multiple-output (MIMO),
strong coupling and nonlinear UAV. Consequently, the

development of reliable unmanned helicopter flight control
system has become a very challenging topic in academic
communities recently.1

Most of high-performance flight control systems are model-
based control architecture which depends on the accurate
dynamics of the helicopter. In most studies that exist in the

literature,2–4 the proposed designs are developed based on
specific helicopter platforms. The nonlinear model based on
first-principle modeling approach is not suitable for flight
control design. In comparison with the nonlinear model, the

linearized model is more suitable for the controller synthesis
in practical autonomous flight. Cai et al.5 attained a
parameterized dynamic model of helicopters by combining
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the first-principles with the system identification approach.
Lyapunov-based control design method6 is applied to proceed
on the controller synthesis in Refs.7–9 However, the control

design proposed by these literatures does not consider the
model uncertainties and external perturbations. Besides, many
previous work focuses on the stability analysis of closed-loop

dynamics, but very few works have considered the influence
of wind gusts, whereas it is a crucial problem for out-door
application. Recently, researchers are beginning to realize that

preserving stability in the presence of exogenous disturbances
is one of the critical issues. Cai et al.10 used H1 control tech-
nique to yield good robust properties with respect to external
disturbances. Leonard et al.11 designed an active disturbance

rejection control based on extended state observer and used
it to suppress the lateral and vertical wind gust disturbances.

In this paper, a new sliding mode controller for a class of

unmanned helicopter which involves immeasurable flapping
angles dynamics and external disturbances is proposed. Sliding
mode control12–14 has the advantages of fast response, no

online identification and easy to implement. It is also proposed
to stabilize underactuated systems which are in cascaded form.
The linearized dynamics model structure is used for the flight

control development. In order to facilitate the control design,
the helicopter model is divided into two subsystems, such as
the longitudinal-lateral subsystem and the heading-heave sub-
system. Since there is no strong coupling between the two sub-

systems, the controllers can be designed respectively. Sliding
mode control technique is applied to compensate for the influ-
ence of immeasurable flapping angles’ dynamic effects and

external perturbations. The global asymptotic stability
(GAS) of the closed-loop error system is proved by the Lyapu-
nov-based stability analysis. Numerical simulation is per-

formed to demonstrate that the controller can achieve
superior tracking performance and robustness compared with
the proportional-integral-derivative (PID) and linear-qua-

dratic regulator (LQR) cascaded controller in the presence of
external disturbances.

2. Dynamic model of an unmanned helicopter

The motion variables of unmanned helicopter are expressed
with respect to a body-fixed reference frame defined as
FB ¼ fOB; xB; yB; zBg, where the center OB is located at the

center of gravity (CG) of the helicopter. The directions of
the body frame orthonormal vectors are shown in Fig. 1.
The linear velocity and angular velocity vectors are denoted

by vB ¼ u; v; w½ �T and xB ¼ p; q; r½ �T, where u; v and
w represent longitudinal velocity, lateral velocity and vertical
velocity respectively, p; q and r represent roll angle velocity,

pitch angle velocity and yaw angle velocity respectively. The
orientation vector is given by H ¼ /; h; w½ �T, with /; h
and w the roll angle, pitch angle and yaw angle. TM and TT

denote thrust vector of the main rotor and tail rotor, respec-

tively. The flapping angles a and b, which represent the tilt
of the tip-path-plane (TPP) at the longitudinal and lateral axis
respectively, are also depicted in Fig. 1. In the following, we

will give the dynamics model of the helicopter.5,8,15,16

Generally, the 11-state nonlinear dynamics for unmanned
helicopter is given as

_xðtÞ ¼ fðxðtÞ; ucðtÞ; dwðtÞÞ ð1Þ

where x ¼ u; v; w; p; q; r; /; h; w; a; b½ �T is

the state vector; uc ¼ ulon; ulat; uped; ucol½ �T is the control
input, with ulon and ulat the cyclic control inputs which control
the inclination of the TPP in the longitudinal and lateral
directions, uped and ucol are the collective control inputs;

dw ¼ d1; d2; d3½ �T denotes the unknown time-varying
external wind disturbance. The nonlinear dynamics equations
can be expressed as

m _vB ¼ �mSðxBÞvB þmgRðHÞTe3 þ TM þ dw

_H ¼ WðHÞxB

J _xB ¼ �SðxBÞJxB þMðTmrÞvc þNðTmrÞ

_a ¼ �q� 1

sf
aþ Abbþ Alonulon

_b ¼ �pþ Baa�
1

sf
bþ Blatulat

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

where m represents the mass of the helicopter; g is the acceler-

ation of gravity; J ¼ diagðJxx; Jyy; JzzÞ denotes inertia matrix of

the helicopter with Jxx; Jyy and Jzz the rolling inertia moment,

pitching inertia moment and yawing inertia moment; SðxBÞ
denotes the skew symmetric matrix of vector xB;RðHÞ
2 SOð3Þ is the rotation matrix representing the orientation
of the body frame FB with respect to the inertia frame

F I; e3 ¼ 0; 0; 1½ �T is a unit vector; WðHÞ represents the
angular velocity transfer matrix. TM ¼ �Tmra; Tmrb;½
�Tmr�T; TT ¼ 0; �Ttr; 0½ �T;vc ¼ b; a; Ttr½ �T;MðTmrÞ 2R3�3

represents an invertible matrix for Tmr and NðTmrÞ 2R3 repre-
sents a parameter vector for Tmr; Tmr ¼KmucolþBm and

Ttr ¼KtupedþBt are the magnitudes of the generated thrusts,

with Km;Kt;Bm and Bt are constants; sf is the main rotor time

constant; Ab and Ba account for the cross-coupling effects
occurring at the level of rotor itself; Alon and Blat are the input
derivatives.

To derive the control law, the dynamics in Eq. (1) are
linearized around the trim flight condition. The following
state-space expressions are obtained:

_xðtÞ ¼ AxðtÞ þ BucðtÞ þ EdwðtÞ
yðtÞ ¼ CxðtÞ

�
ð3Þ

where y ¼ u; v; w; w½ �T is the output vector. The
Jacobian matrices of A 2 R11�11 and B 2 R11�4 for hover fight
condition are given as

Fig. 1 Helicopter’s body-fixed frame.

278 B. Xian et al.



Download English Version:

https://daneshyari.com/en/article/757366

Download Persian Version:

https://daneshyari.com/article/757366

Daneshyari.com

https://daneshyari.com/en/article/757366
https://daneshyari.com/article/757366
https://daneshyari.com

