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a b s t r a c t 

In this paper, a mathematical model with diffusion and cross-diffusion is proposed to de- 

scribe the interaction between the vegetation and the soil water. Based on the view of 

Turing pattern, we discuss the conditions of the diffusion-induced instability and the cross- 

diffusion-induced instability of a homogenous uniform steady state. We find that either a 

fast diffusion speed of water or a great hydraulic diffusivity due to the suction of roots 

may drive the instability of the homogenous steady state. Furthermore, we find that both 

the rain-fall rate and the infiltration feedback parameter can induce the transitions among 

the vegetation state, pattern formation and bare soil state. It is also found that the “terrain 

slope” may cause the instability of the homogenous steady state and drive the formation 

of periodic stripe pattern. Consequently, the diversity of dryland vegetation in reality can 

be explained as a result of pattern solutions of the model. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the past four decades, the ecological unbalance between the limited water resource and ecosystem engineers [14,15] , 

such as animals, plants or microorganisms, has been observed and the desertification has become more and more serious 

[10] . The desertification may be a slow and gradual process in which the vegetation is not homogenous but self-organized 

spatial patterns [3,25,30] . The vegetation spatial patterns exhibit repetitive or distinctive patches in space and time. Their 

forms can be a two-phased irregular mosaic consisting of a high-cover phase and a low-cover phase (bare land) [2] or many 

different regular types such as bands, labyrinth, spots, stripes, gaps, and rings [16,17,23,24,30,31,35] , which are observed in 

arid and semiarid areas. 

How ecosystem engineers affect ecosystems and how the vegetation consists of patterns are the main frontiers in ecology 

[30] and have fascinated many ecologists [14,15,40] . Several mechanisms have been elucidated [40] to underly patterning 

of vegetation. Basically, these mechanisms include water scarcity, plant competition over water resources, redistribution 

of water by diffusion and runoff, and the positive feedback between water availability and plant [24,28,31,33,39] . Other 

factors, such as livestock overgrazing [29] , climate variables [1,6,8] , soil properties [38] , rainfall interception [13,32] , and 

toxic compounds [4,21,22] may also drive the formation of patterns. Recently, mathematical modeling has been shown to 

be a powerful approach to understand mechanisms of pattern formations [10,16,18,30,31,35,36,39] . Based on the view of 

vegetation pattern formation as a symmetry-breaking phenomenon [5] , the Klausmeier’s model [16] generates the complex 

spatial patterns, often called a Turing pattern [37] , from a relatively simple dynamical system. 
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To understand the mechanism for generation of vegetation patterns and their observed resilience, Shnerb et al. [35] pro- 

pose the following mathematical model of one species (shrubs or trees) and one resource (water): ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∂w 

∂t 
= D w 

�w + v · � w + R − λwb − w, 

∂b 

∂t 
= wb − μb, 

w (x, 0) = w 0 (x ) , b(x, 0) = b 0 (x ) , 

(1.1) 

where w is the ground water density and b is the shrubs biomass density; parameters D w 

, R, λ, μ are positive constants 

that denote the water diffusion coefficient, the rain-fall rate, the water consumption rate in the presence of vegetation and 

the vegetation death rate, respectively; the term v · � w takes account of the downhill water loss in which v is a “terrain 

slope” vector. The initial states w 0 ( x ) and b 0 ( x ) are nonnegative functions of spatial variable x . The initial value problem of 

(1.1) is subject to a spatially periodic boundary condition over a planar spatial domain. 

In [35] , Shnerb et al. have shown that the final state of (1.1) is a uniform covering of all the plane by the amount of flora 

that corresponds to the stable fixed point. Note that there is no cross-diffusion in (1.1) . Note also that the water infiltration at 

vegetation is important [9,10] . Following [11,19,39] , we modify the self-diffusion of water in (1.1) to D w 

�(w − βb) , where β
> 0 represents the hydraulic diffusivity due to the suction of roots in the vadose zone. To capture the “infiltration feedback”

between the plant and the ground water [9,10] , following [20] we assume that the vegetation death rate μ is monotonously 

decreasing in b and is described by 

μ(b) = μ0 + 

μ1 

b + 1 

, (1.2) 

where μ0 , μ1 are positive constants. Biologically, it can be explained as follows. The plant can loosen the soil locally which 

in turn increases the infiltration of the vegetation patch. Thus, the larger plant biomass density results in the higher infil- 

tration, which decreases the death rate of shrubs due to the more soil water available. As a consequence, we consider the 

following model: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂w 

∂t 
= D w 

�(w − βb) + v 
∂w 

∂x 1 
+ R − λwb − w, x ∈ �, t > 0 , 

∂b 

∂t 
= D b �b + wb − μ(b) b, x ∈ �, t > 0 , 

∂w (x, t) 

∂ν
= 

∂b(x, t) 

∂ν
= 0 , x ∈ ∂�, t > 0 , 

w (x, 0) = w 0 (x ) ≥ 0 , b(x, 0) = b 0 (x ) ≥ 0 , x ∈ �. 

(1.3) 

where all quantities are in nondimensional form; � is a bounded planar domain with a smooth boundary ∂�; no-flux 

boundary condition is imposed on ∂� so that the ecosystem is closed to exterior environment; ν is the outward unit 

normal vector of the boundary ∂�; x = (x 1 , x 2 ) is the spatial variable; � = 

∂ 
∂x 2 

1 

+ 

∂ 
∂x 2 

2 

is the Laplacian operator; the diffusion 

term D b �b denotes the spread of plants both by clonal reproduction and by seed dispersal [26] , where D b is a positive 

constant. Moreover, the surface runoff is modeled by the term v ∂w 

∂x 1 
, where v is a constant downhill runoff flow velocity in 

the negative x 1 −direction [16] . 

This paper is organized as follows. In Section 2 , we analyze the diffusion-induced instability. In Section 3 , we consider 

the cross-diffusion-induced instability. The effect of the ground surface is shown in Section 4 . We end with discussions in 

Section 5 . 

2. Diffusion-induced instability 

We start to consider the diffusion-induced instability, which means that the uniform steady state loses its stability due 

to the diffusion effect. When β = 0 and v = 0 , we have the following initial boundary problem ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂w 

∂t 
= D w 

�w + R − λwb − w, x ∈ �, t > 0 , 

∂b 

∂t 
= D b �b + wb −

(
μ0 + 

μ1 

b + 1 

)
b, x ∈ �, t > 0 , 

∂w (x, t) 

∂ν
= 

∂b(x, t) 

∂ν
= 0 , x ∈ ∂�, t > 0 , 

w (x, 0) = w 0 (x ) ≥ 0 , b(x, 0) = b 0 (x ) ≥ 0 , x ∈ �. 

(2.1) 

Here, we consider system (2.1) in the spatial domain � = (0 , lπ) . Firstly, we present the following lemma about the global 

stability of the bare-soil steady state (w 0 , b 0 ) = (R, 0) , which means the extinction of the plant. 

Lemma 2.1. Let the parameters D w 

, D b , R, λ, μ0 , μ1 be positive. Then the bare-soil steady state ( w 0 , b 0 ) of (2.1) is globally 

asymptotically stable if R ≤ μ0 . 
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