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a b s t r a c t 

In this paper, we perform spatiotemporal bifurcation analysis in a ratio-dependent 

predator–prey model and derive explicit conditions for the existence of non-constant 

steady states that emerge through steady state bifurcation from related constant steady 

states. These explicit conditions are numerically verified in details and further compared 

to those conditions ensuring Turing instability. We find that (1) Turing domain is identical 

to the parametric domain where there exists only steady state bifurcation, which implies 

that Turing patterns are stable non-constant steady states, but the opposite is not nec- 

essarily true; (2) In non-Turing domain, steady state bifurcation and Hopf bifurcation act 

in concert to determine the emergent spatial patterns, that is, non-constant steady state 

emerges through steady state bifurcation but it may be unstable if the destabilising effect 

of Hopf bifurcation counteracts the stabilising effect of diffusion, leading to non-stationary 

spatial patterns; (3) Coupling diffusion into an ODE model can significantly enrich popula- 

tion dynamics by inducing alternative non-constant steady states (four different states are 

observed, two stable and two unstable), in particular when diffusion interacts with differ- 

ent types of bifurcation; (4) Diffusion can promote species coexistence by saving species 

which otherwise goes to extinction in the absence of diffusion. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

A characteristic feature of ecological systems is the complex interactions among individuals and the interactions between 

individuals and their surrounding environment [25] , which occur over a wide range of spatial and temporal scales. The spa- 

tial component has been identified as an important factor in determining the distribution of populations with the advance- 

ment of time and the structure of communities over their habitats. Experimental evidence suggests that movement rates 

of interacting individuals can dramatically affect population stability [12,20] and the composition of communities [8,21] . A 

consequence of individual movement behaviour is the spatial heterogeneity of individual abundance within the ecosystem 

which is observable at the macroscopic levels of population and community. Spatial pattern is a ubiquitous scenario in 

nature and often takes the role of modifying the temporal dynamics and regulating population stability [23,37] . In recent 

decades, a significant body of literature has explored the interactions between individual movement behaviours and spatial 
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patterns with the ultimate goal of understanding how spatial component influences the dynamics of populations and the 

structure of communities. 

A convenient approach to describe the spatiotemporal population dynamics is the reaction-diffusion framework [29] , 

which is a way of relating dynamics at the individual level to the dynamics at the population level. In spite of its simple 

representation, reaction-diffusion systems can generate a wide variety of spatial patterns, giving this framework a powerful 

potential for application as an experimental hypothesis in a wide variety of biological phenomena [14] . Reaction-diffusion 

systems were first used to explain the formation of spatial patterns in ecological systems by Segel and Jackson [35] , inspired 

by the seminal work of Turing [45] . Since then, numerous studies under the reaction-diffusion framework have been devoted 

to the description of spatial patterns [13,22] , to the identification of its drivers [5,6,15,32,52] , and to the implications for 

community dynamics [10,26,27,34] . Many important and interesting findings have been unrevealed. For instance, the author 

in [13] simulated both regular and irregular patterns in semiarid vegetation using reaction-diffusion system and found that 

the theoretically predicted patterns are in close agreement with field observations. Baurmann et al. [6] investigated different 

instability mechanisms behind the emergence of spatial patterns in an ecological prey–predator system. 

Turing instability and Turing–Hopf bifurcation are two well known mechanisms behind the formation of spatial pattern 

[5,6,41] . The concept of Turing instability is that the locally stable homogeneous steady state becomes unstable due to small 

amplitude heterogeneous perturbation around the homogeneous steady states, leading to the formation of spatially hetero- 

geneous distribution of population over their habitats [35,45] . The emergent spatial patterns due to Turing instability are 

stationary [3,9,48] , which are also known as Turing patterns such as spots, strips or mixture of spots and strips. The basic 

idea of the Turing–Hopf bifurcation is that the locally unstable homogeneous steady state evolves into non-stationary spatial 

patterns under spatially inhomogeneous spatial perturbation. Non-stationary spatial patterns are characterized by periodic, 

qausi-periodic or even chaotic patterns as time advances. Besides these two mechanisms, other mechanisms such as bio- 

logical invasion, turbulence, travelling wave, periodic travelling wave can also be responsible for spatial pattern formation 

[23,38,42,46] . 

The spatial patterns generated by the aforementioned two mechanisms can be obtained by numerical simulations, and 

the conditions for Turing and Hopf bifurcations can be reached by means of local stability analysis around the suitable 

homogeneous steady state [6,48] . These techniques can predict the regions in the targeted parametric space where we can 

observe spatial patterns but they are unable to predict the spatial patterns generated by large amplitude spatiotemporal per- 

turbations. Non-constant steady states have been suggested as a fundamental argument for the existence of spatial patterns, 

and received great attention from various researchers [18,30,31,39,40,50] . However, the complexity of the (generally implicit) 

conditions for the existence of non-constant steady states makes it very hard to verify them numerically. Thus, the relation- 

ship between the emergent spatial patterns including Turing patterns and the non-constant steady states remains poorly 

understood. Undoubtably, clear clarification of this relationship is of paramount importance in comprehensive understand- 

ing of spatiotemporal dynamics and spatial pattern formation as it bridges numerical results on emergent spatial patterns 

and theoretical predictions of non-constant steady states [4] . This paper is devoted to the clarification of this intimate rela- 

tionship. To this aim, we consider a spatiotemporal prey–predator model with a ratio-dependent functional response in one 

dimensional spatial domain in order to derive precise and explicit conditions for the existence of non-constant steady state 

within the parametric restrictions that are satisfied for the stability and instability of constant steady state, an important 

and interesting aspect that has been overlooked by most of the researchers. 

Predator–prey models with ratio-dependent functional response for predator consumption are widely implemented in 

ecological modelling and the ratio-dependent functional response has been strongly supported by numerous field and 

laboratory experiments [2,7,11,33] . A great number of theoretical works aim for understanding the formation of spatial 

patterns in ratio-dependent diffusive predator–prey models by means of the standard Turing–Hopf bifurcation analysis 

(e.g., [1,36,49] ), the norm form and centre manifold theory for determining the direction and stability of Hopf bifurcation 

(e.g., [43,53] ), and the technique of steady-state bifurcation (e.g., [4,47] ). The former two approaches consider spatiotempo- 

ral dynamic models to derive the conditions under which purely spatially or temporarily periodic pattern occurs, while the 

last approach attempts to establish a link between the spatial patterns observed in the spatiotemporal models with the spa- 

tially heterogeneous steady state of the associated elliptic systems. The current paper combines the first and last approach 

by numerically comparing the parametric restrictions that are satisfied for existence of non-constant steady state and the 

conditions that are satisfied for Turing instability. 

The paper is organised as follows. In the next section, we describe the temporal model and recall its basic dynamical 

features to understand the local stability of constant steady states with the help of complete global bifurcation analysis. 

In Section 3 , we introduce the spatiotemporal model and present Turing instability results. Special attention is paid to the 

emergent stationary and non-stationary spatial patterns. Then we derive the general conditions in Section 4 ( �⊂ R n ) and 

more explicit conditions in Section 5 ( �⊂ R ) for the existence of non-constant steady states in order to facilitate numerical 

analysis which is carried out in the coming section. In Section 6 we carry out detailed numerical simulations to verify the 

analytical findings obtained in Section 5 and most importantly cross verify the existence conditions of non-constant steady 

states and compare them to those conditions of Turing as well as Turing–Hopf bifurcations. The paper is closed with a 

conclusion section. The reason for Section 4 is to keep the completeness and generality of this paper and that part of the 

conclusions in that section will be referred to later in Section 5 . However, readers who are interested in numerical analysis 

can skip Section 4 without causing any confusion. 
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