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Abstract

Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D
transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a
finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element
method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some
characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of
large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.
© 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

The application of electromagnetic force in defense technol-
ogy is receiving more and more attention [1]. Research on the
interior ballistics of railgun requires the detailed analysis of
launch components, such as armature and rail, which exhibit the
coupled electromagnetic, thermal and structural behaviors. The
accurate numerical simulation and modeling of electromagnetic
process are crucial to treat the multi-field coupled problem. But
some features of a railgun launcher make it difficult to model: the
railgun launcher is inherently three-dimensional, and the high-
speed sliding electric contact between rail and armature is
involved during a railgun shot. Some computer programs, such as
EMAP3D [2], MEGA [3] and HERB [4], were developed to
simulate the electromagnetic diffusion process under the condi-
tion of high-speed sliding electric contact. Recently, an electro-
magnetism module was added to the LS-DYNA dynamics
analysis software [5] for the coupled mechanical/thermal/
electromagnetic simulations.

Besides the electromagnetic field analysis, the thermal and
structural aspects are becoming even more important at the

weapon level currents conducted in rails and armature. Many
potentially interesting features, such as structural deformation
and armature melting, can be obtained more easily from
numerical simulation than from experiment.

The models, algorithms and results of the multi-field analy-
ses for railgun were presented in the paper. The electromagnetic
and thermal equations were solved by an in-house program
code. The simulated results of electromagnetic field were trans-
ferred as forcing functions to the structural module of
LS-DYNA, and the structural dynamic responses of a railgun
were obtained.

2. Theoretical model and numerical method

2.1. Basic assumptions

The load transfer methods were used to couple the electro-
magnetic, thermal and structural fields. The results of electro-
magnetic analysis were transferred to the thermal and structural
analyses. In order to facilitate the multi-field computation, the
following assumptions were made: (a) only metallic compo-
nents, such as armature and rail, were considered in a model;
(b) the nonlinear properties of materials were ignored; (c) the
contact surface between armature and rail was smooth; (d)
one-way coupling was used, and the calculation of the electro-
magnetic field provided ohmic heating power loads for thermal
conduction and Lorentz force loads for structural field.
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2.2. Magnetic diffusion equations

The electromagnetic field was modeled by magnetic diffu-
sion equations in the Lagrange coordinate system. Using the
magnetic vector potential

�
A and electric scalar potential ϕ as

unknown quantities, a set of magnetic diffusion equations,
which can be deduced from quasi-static Maxwell’s equations, is
expressed as
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where μ is the permeability of conductors and σ is the electrical
conductivity. For non-conductive regions, the Laplace equation
can be deduced form Eq. (1) due to negligible electrical
conductivity.

A hybrid finite element and boundary element coupling
algorithm was used in the calculation of the magnetic diffusion
equations [6]. The finite-element formulation based on the
Galerkin form of weighted residuals method was used
for the magnetic diffusion equations for the conductive
region including rail and armature. The discretized magnetic
equations are approximated by the following matrix form
as
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where K, M, P and S are the coordinate matrices. For the
non-conductive region, the boundary element formulation was
used for Laplace’s equation. The boundary integral equation
was discretized into matrix form as follows
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where H and G are the influence matrices. After a left
multiplication of SG−1, Eq. (3) is added to Eq. (2), yielding the
following set of equations
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2.3. Thermal diffusion equation

Under the assumption of energy balance, a 3D form of the
thermal diffusion equation was deduced in a moving coordinate
system
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where T, ρ, c and κ are temperature, solid density, specific heat
and thermal conductivity, respectively; and �Q is the heat load
generated in the conductor due to ohmic heating. �Q can be
expressed as
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where
�
J is the current density which can be expressed by
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In the temperature field calculation, a sparse symmetric
matrix was generated by a finite element method based on the
Galerkin form of weighted residuals.

2.4. Structural equation

Only the elastic processes of the armature and rails were
considered to facilitate the coupling calculation. The governing
equations based on conservation of momentum are expressed in
the form of tensor as

s f uij j i i, + = ρ�� (8)

where s, f and u are stress tensor, force per unit volume and
structural displacement, respectively. The Galerkin method was
used to discretize the structural equations to the finite element
formulas which are expressed as follows
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where M and K are mass matrix and stiffness matrix,
respectively; and F is force vector that can be obtained from
electromagnetic field. The time-dependent Lorentz force
density is described as
� � �
F J B= × (10)

where
�
B is the magnetic flux density which can be expressed

as
� �
B A= ∇× (11)

2.5. Numerical method

The electromagnetic and thermal fields were expressed by
diffusion equations. The computational domain was discretized
using the Galerkin method, and the time derivative terms were
approximated by a backward difference scheme which is
unconditionally stable. Same integration time step was chosen
for solving the electromagnetic and thermal equations. The
linear algebraic equations of the electromagnetic and thermal
fields were solved by a preconditioned generalized conjugate
residual (GCR) method [7] and an incomplete Cholesky con-
jugate gradient (ICCG) method [8], respectively.

The structural field was described by the dynamic equations
with second-order derivative terms of the time. Due to the
flexibility of LS-DYNA in explicit dynamics calculation and its
extensive application in ballistics research [9], LS-DYNA was
used as a solver for the structural equations. Although the
characteristic time scale of structural field are quite different
from that of other physical fields, the time step was controlled
automatically in LS-DYNA.
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