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a b s t r a c t

Early crack signals in critical infrastructure components of major equipment are hardly to be extracted
due to its low signal noise ratio (SNR). A de-noising method combined wavelet packet (WP) technology
with sparse code shrinkage (SCS) is proposed in this study. Firstly, WP reconstruction technology is used
to reserve the crack signal with a specified frequency range. That is, the signal is decomposed by Meyer
wavelet into five layers, and the signal with the frequency range from 187.5 kHz to 609.375 kHz is
reserved. Then SCS method removes noise within the specified frequency range. Namely, the probability
density function (PDF) of the signal independent coefficients is estimated via the generalized Gaussian
model (GGM) in the independent component analysis (ICA) space. The nonlinear de-noising is finished
by utilizing maximum a posteriori (MAP) estimate. The results obtained by the combined method are
compared with those generated by the SCS method and the WP de-noising method. It demonstrates that
the combined method is the best one among the three methods in extracting weak signals. Its output SNR
is �2.38 dB and the correlation coefficient (CC) is 0.54 when the input SNR is �20 dB. They are higher
than those obtained by the SCS method (SNR �4.46 dB and CC 0.51). The WP method is the worst
(SNR �3.54 dB and CC �0.003). Therefore, the combined method is quite suitable for weak signal
extraction.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Key components of mechanical equipment, such as wind tur-
bine gearboxes, Francis turbine runners and Turbine rotors, are
more prone to incur cracks and other faults, which can spell failure
of entire devices and even give rise to serious security incidents.
Accordingly, it is of great significance to detect and predict early
faults in key components by taking advantage of acoustic emission
(AE), which can ensure stable operation of these devices and
reduce economic losses.

Early crack signals are usually weak and prone to be interfered
by various noise [1,2]. For the sake of filtering out noise and recov-
ering source signals from the received signals, noise reduction
methods [3–6] mainly including time-domain analysis,
frequency-domain analysis and time–frequency domain analysis

have developed in recent years. Crack signals are generally non-
stationary, whereas wavelet analysis is one of the most effective
ways to deal with a non-stationary random signal. It assumes that
the main frequency range of signals and noise is different, which
can filter out noise by selecting a suitable filter while useful signals
are retained [7]. However, this method is hardly to remove the
noise that had the same frequency range with the useful signals.
Furthermore, wavelet basis functions are specific. Sparse code
shrinkage (SCS) [8,9] based on independent component analysis
(ICA) has essential benefits over wavelet method. That is, it cannot
be affected by noise with the same frequency range and is free
from the interference owing to the strength of noise. Indeed, the
basis function and shrinkage function are determined solely by
the statistical properties of the signal alone [10]. Only a few neu-
rons are active simultaneously after ICA transform. These neurons
with substantial activities are retained and the components
(purely noise) with small absolute values are set to zero. Then
the noise is removed. The principle of SCS is firstly using ICA to find
a basis functions matrix, which requires noise-free source signals
as a prior knowledge [11–13]. Actually, the source signals generally
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cannot be obtained in advance, which makes the method be
restricted in practical applications. Therefore, a noisy ICA model
is used to choose the basis for sparse coding.

In this study, a de-noising method combined wavelet packet
(WP) technology with SCS (i.e. the combined method) is used to
extract weak crack signals due to their better noise reduction capa-
bility. WP technology is used to remove noise with the frequency
range outside crack signals firstly. Then, the noise within the fre-
quency band is removed by the SCS method. That is, the probability
density functions (PDFs) of independent coefficients are estimated
by the generalized Gaussian model (GGM) [14,15]. Then the basis
functions of the crack signals are obtained by noisy mixture signals
in a noisy ICA model. Finally, the crack signals are extracted by
maximum a posteriori (MAP) [16] directly in ICA space.

In this study, the de-noising theory combined wavelet with SCS
theory is introduced firstly. Then the experimental procedure is
carried out in the following section. The results are compared with
those obtained by the SCS method and the WP method.

2. De-noising theory

2.1. WP de-noising theory

WP analysis decomposes signals in a whole frequency range
that differs from the binary discrete wavelet transformation. Each
WP includes the information of signals with a specific frequency
band, which are in diverse time windows and at various resolu-
tions. Some packets contain important information while other
packets are relatively useless.The crack signal SðtÞ is decomposed
into i levels according to the following equation [17],

dð0;0ÞðtÞ ¼ SðtÞ
dðiþ1;2jþ1Þ ¼

X
k

hðk� 2tÞdði;jÞðtÞ

dðiþ1;2jÞ ¼
X
k

gðk� 2tÞdði;jÞðtÞ
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where d(i,j) represents the jth WP coefficients in the ith level; i = 0, 1,
2, . . .; j = 0, 1, . . ., 2i � 1; t = 1, 2, . . ., 2I�i; I = log2N; N is the number
of t; h and g are decomposition filters. h is pertinent to the scaling
function and g is pertinent to the wavelet function.

The WP coefficients are reconstructed into signals with differ-
ent frequency bands. Si0 represents the reconstructed signal of
d(i,0). Similarly, Sij represents the reconstructed signal of d(i,j). Then,
the total signal is

S ¼ Si0 þ Si1 þ � � � þ Sij þ � � � þ Si;2i�2 þ Si;2i�1 ð2Þ

2.2. SCS de-noising theory

ICA model with additive noise can be expressed as,

x ¼ Asþ n ð3Þ
where n ¼ ½n1; . . . ;nn�T is a noise vector, x is an observed noisy sig-
nal vector, s is a pure signal vector. n and s are assumed indepen-
dent of each other. The inverse of Eq. (3) is,

y ¼Wx ¼ sþWn ð4Þ
where W ¼ A�1 is a decoupling matrix and y is the estimated value
of s. The infomax optimization algorithm [18] is used to extract W.
Namely,

W Wþ gðI�uðsÞsTÞW ð5Þ
where g is a learning rate factor and uðsÞ ¼ @ log FðsÞ

@s is a transcenden-
tal function. FðsÞ is the PDF, whose model is extremely vital and
directly determines de-noising effects. The GGM is used in the study
and expressed as

Fðs;a;b;lÞ ¼ a
2bCð1=aÞ

� �
e �j

s�l
b jað Þ ð6Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Cð1=aÞ
Cð3=aÞ

q
is a scale parameter. Cð�Þ is the Gamma func-

tion. l, r2 and a are the mean, variance and shape parameter of
the generalized Gaussian distribution, respectively, which are esti-
mated using maximum likelihood criterion according to the
observed signal x ¼ ½x1; x2; . . . ; xN�. Namely,

Lðx;l;r;aÞ ¼ log
YN
i¼1

Fðxi;l;r;aÞ ð7Þ

where x is an M � N-dimensional matrix constructed by a single
channel signal through splitting the column.

Fig. 1. Crack signal produced by tensile test.
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Fig. 2. Waveform (a) and spectrum (b) of crack signal.
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