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a b s t r a c t

Based on the kinetic nature of the lattice Boltzmann method (LBM), the critical part of simulating a bubble

in a shear flow is focused on two types of boundaries, i.e., the fluid-structure boundary and the gas–liquid

interface. Based on the free-energy model, two particle distribution functions are defined for the fluid density

and an order parameter, separately. The gas–liquid interface can be described by solving the Cahn–Hilliard

equation, then a modified bounce-back boundary treatment is used for the fluid-structure boundary. During

the bounce-back process, the effect of boundary moving velocity is taken into account in calculating the two

distribution functions. By the above processing, a three-dimensional numerical model is established to pre-

dict bubble behaviors in a flap-induced shear flow, which takes the effect of the presence of solid boundaries

into consideration. Due to the coexistence of three phases, a detailed verification including the multiphase

Laplace Law, the mass conservation, the bubble deformation and the shear flow property is completed in the

wall-bounded shear flow. Subsequently, the effects of flap velocity and fluid viscosity which are both related

to the capillary number are investigated. The fact that the capillary number could not able to predict the bub-

ble deformation well theoretically due to the existence of solid boundaries is confirmed. These results show

that the flap velocity and the fluid viscosity affect the transient deformation process more severely than flow

patterns.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The flow-induced deformation research of a bubble is an impor-

tant component in fluid dynamics, not only due to its wide existence

in the industrial field but because of its essential position in the fun-

damental research. Traditionally, the flow structure around a bubble

is not stable, and has a complex velocity property. A typical and sim-

plified situation is that a bubble moves and deforms in a shear flow.

Then, further research works can be promoted to model more com-

plex situations.

Two important issues in simulating a bubble in a shear flow

are the bubble interface treatment and the fluid-structure bound-

ary treatment. In the related areas, the subject of elastic membrane

movement has been studied extensively for a long time. Starting from

the pioneering work by Taylor [42], most literatures on flow-induced

drop or bubble simulations are devoted to the unbounded flows,

where the wall effect can be ignored. Schmid-Schoenbein and Well

[30] carried out the work by experimental studies. Barthes-Biesel
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et al. [4, 5] tried to explain the deformation of an elastic deforma-

tion by theoretical analysis. Shapira et al. [32] theoretically analyzed

the hydrodynamic interaction between the bubble in shear flows and

the two boundary walls. However, it is well known that though some

features are similar, the gas–liquid interface is different from an elas-

tic capsule for its constant surface tension. Sheth and Pozrikidis [33]

conducted numerical simulations to study the effects of inertia on the

deformation of liquid drops in simple shear flows. Subsequently, Lee

and Pozrikidis [19] researched the bubble interface deformation in

Navier–Stokes flows. Zhang and Li [49,50] carried out some studies on

bubble oscillation and mass diffusion under the condition of acous-

tic excitation. With the development of high performance computing

and various numerical methods, numerical simulations are playing a

more important role in the field of bubble dynamic research. In the

conventional numerical methods, the volume-of-fluid (VOF) method

is one of the most popular methods. Rabha and Buwa [26] simulated

single/multiple bubbles in sheared liquids by using the VOF. Another

popular method is the boundary element method (BEM) which can

effectively conserving computing resources. Based on the BEM, Zhang

et al. carried out further studies on bubble motions under various

conditions, such as the fluid viscosity, the compressibility and the dif-

ferent solid boundary conditions [21, 46–48].
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For moving fluid-structure boundary treatments, some matters

should be paid more attention. It is the origination of the flap-induced

shear flow [38]. Through the experimental study, Sibillo et al. [35]

investigated the bubble deformation under the condition of both

considering and ignoring wall effects. The most important issue in

Sibillo’s work is that a clear picture of drop deformation in the con-

fined shear flow is given. Meanwhile, Sibillo’s work indicates that the

Taylor theory (1934) is not suitable for the bubble deformation pre-

diction in a wall-bounded shear flow. In addition, the effect of the

non-dimensional gap ratio ranging from 0.07 to 1 was researched. It

was found that the higher the gap ratio, the more extended is the

shape at steady state. Driven by Sibillo’s work, a three-dimensional

model of simulating a bubble in wall-bounded shear flows is estab-

lished based on the Lattice Boltzmann method. The density and mo-

menta is conserved by describing a set of particles moving on a Euler

grid at each step thus approximating the behavior of the hydrody-

namic equations for the fluids [45]. It has been reported that the LBM

has a comparative advantage in dealing with complex boundaries in-

cluding multiphase interfaces [3,7,25] and fluid-structure boundaries

[17,53] based on its molecular kinetic theory characteristics. The most

famous four models for immiscible two-phase flows are: Shan-Chen

model [31], Rothman-Keller model [9], mean-field model [12,13], and

Free energy model [14,40].

In present study, the whole model is based on the free-energy lat-

tice Boltzmann BGK model such that bubble interface deformations

and fluid properties are determined by the free energy. By solving

the convective Cahn–Hilliard equation instead of the scalar trans-

port equation, the interface profile can be analytically introduced into

the free energy function, which can overcome the deficiencies of the

work of Inamuro et al. [14] and Swift et al. [40]. In addition, special

treatments of fluid-structure boundaries are completed to introduce

the effects of boundary motions and offsets on the accuracy of the

calculated results when actual physical borders and grid lines do not

coincide in the multiphase flow system.

2. Computational model and implementation

For wall-bounded shear flows, Lee et al. [19] proposed a two-

dimensional model to simulate the bubble motion. Based on the dual

grid lattice Boltzmann method, Rosales et al. [27] studied the effect

of the gap ratio (R/H, R is the bubble radius, and H is the channel

height) on bubble deformations in a wall-bounded shear flow. Ros-

ales found that when the ratio was 0.1, the effect of the channel walls

was expected to be minimal, and the numerical results matched well

with the theoretical predictions by Cox [6]. When the ratio increased

to 0.2, 0.333, the results would have a significant deviation, though

Ca was still kept as 0.05. However, Rosale’s work was based on the

two-dimensional model, so the consequence of dropping the third

dimension was not completely known, and a clear picture of drop

deformation in confined shear flow was still lacking. In our work, a

three-dimensional model is established. Meanwhile, a clear view of

bubble deformations and fluid profiles is given.

2.1. Three-dimensional computational model

A bubble is immersed in the shear flow induced by the top and

bottom moving flaps with the velocity, u1x = ub, u1y = 0. The simu-

lated system consists of one bubble with a certain interface thickness

situated in the center of a H × L × W domain, as shown in Fig. 1.

The bubble interface is N, and the surface tension coefficient is de-

fined as σ . The lattice unit system in the work of Zheng et al. [52] is

referred in present study. Therefore, the uniform mesh is used with

�x = �y = �z = 1, and the time interval �t equals to the spatial

mesh spacing. That said, the lattice unit is always kept as 1 and the

lattice time is actually the time steps.

u1x = ub

u1y = 0

u1x = -ub

u1y = 0

H

L W

Fig. 1. Model sketch of bubble initialized in the gap of two moving flaps.

For the two phases, their movements can be described by the

Navier-Stokes equations:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇ · P + μ∇2u + F. (1)

The interface evolution can be obtained by solving the Cahn–

Hilliard equation ([15]; Kendon et al. [16]):

∂φ

∂t
+ ∇ · (φu) = M∇2θ . (2)

Here, φ is the order parameter [41] defined as |ρ1 − ρ2|/2. M is the

mobility and θ is the chemical potential that can be calculated ac-

cording to the free-energy model.

2.2. Bubble interface representation

To solve the Cahn–Hilliard equation, a modified lattice Boltz-

mann equation [18] is adopted by following the work of Zheng et al.

[51,52]:

fi(x + ei�t, t + �t) = fi(x, t) + (1 − q)[ fi(x + ei�t, t)

− fi(x, t)] + �i. (3)

where fi is the particle distribution function, ei is the lattice discrete

velocity, and q is the constant coefficient. �i is the collision term

which can be written as

�i = f eq
i

(x, t) − fi(x, t)

τφ
. (4)

where τφ is the dimensionless relaxation time parameter, f
eq
i

is the

equilibrium distribution function. By using Taylor series expansion,

Eq. (3) can be written as

�t(∂t + ei · ∇) fi + 1

2
(�t(∂t + ei · ∇))2 fi

= (q − 1)(�t(ei · ∇) fi + 1

2
(�t(ei · ∇)2 fi) + O((�t)3) + �i (5)

Furthermore, by using the Chapman-Enskog expansion,

fi ≈ f eq
i

+ ε f (1)
i

+ ε2 f (2)
i

∂t ≈ ε∂t0 + ε2∂t1,

∂x ≈ ε∂t1

(6)

where ɛ is the Knudsen number, the Cahn–Hilliard equation with the

second order of accuracy can be recovered,

∂tφ + ∇ · (φu) − M∇2θ + O((�t)2) = 0, (7)

where M = (2τφq2 − q)��t/2 and q = 2/(2τφ + 1). � is a parameter

used to modify the mobility. In the calculation process, the following
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