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a b s t r a c t

A near-wall domain decomposition method for use in turbulence modelling is applied to the k�x SST,
Spalart–Allmaras and BL-v2=k turbulence models. The near-wall region is excluded from the main com-
putational mesh. This eliminates the expense of computing the solution in the viscous sub layer and
reduces the total computation time.

A one-dimensional boundary layer equation is used to transfer the wall boundary condition from the
wall to an interface located within the flow domain. The boundary conditions imposed on the interface
are of Robin type and are written in mesh-independent form. The boundary layer equation can contain
source terms such as the pressure gradient or near-wall damping terms. Scalar boundary conditions
can be calculated using the same formalism as the boundary conditions for the velocity.

The implementation of the boundary conditions is tested on a channel flow, two heated annulus flows
and a two-dimensional, asymmetric diffuser. For each case, different locations of the interface boundary
are tested. The results are not sensitive to the location of the interface. Friction factors and heat transfer
data calculated with the domain decomposition approach compare well to the results obtained with the
fully-resolved forms of the respective turbulence models.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid flows in practical engineering applications often have very
large Reynolds numbers. In such flows, a boundary layer develops
near to the walls in which the velocity of the fluid changes rapidly
with distance from the wall. This poses a significant computational
challenge. In order to capture the large gradients in the boundary
layer, the computational mesh must be very fine near the wall.
This leads to a large computation time.

In large eddy simulation (LES), the computational requirement
of resolving the near-wall layer often makes a wall-resolved LES
computation impractical. However as computing power increases,
it is becoming more common to fully resolve the boundary
layers in a computational fluid dynamics (CFD) calculation,
particularly with Reynolds averaged Navier–Stokes (RANS) models.
Turbulence models that resolve the boundary layer are called low
Reynolds number (LRN) models. However the time requirements
of resolving the near-wall layer can be as much as 90% of the total
computation time. This is unappealing for industrial applications,
where a solution is often required in a short space of time.

For these reasons, various approaches have been developed to
simplify the modelling of the near-wall regions of flows. In RANS
computations, wall functions are often used. These are
semi-empirical correlations that link the velocity at the cell nearest
to the wall with the shear stress at the wall. This allows a coarse
grid to be used near to the wall whilst retaining an adequate
approximation of the wall shear stress. The coarser grid reduces
the computational cost of the simulation. Models that use wall
functions are called high-Reynolds number (HRN) models. The wall
function represents the inner (near-wall) region while the turbu-
lence model represents the outer region [16].

The earliest wall functions are based on the log law, which is
valid under certain circumstances in the fully turbulent region of
the boundary layer. The logarithmic relationship between wall
distance and flow velocity is used to calculate the wall shear stress.
However the log law is only valid in the logarithmic region
of the boundary layer. If the near-wall cell is located in the
viscous sub layer then the wall function fails. Furthermore in many
flows, such as those with separation regions, the logarithmic
region of the boundary layer does not exist at all. Such wall
functions are commonly used in engineering applications today,
even though they are of limited accuracy, especially if the
near-wall cell centre does not lie in the logarithmic region of the
boundary layer.
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An improvement to this type of wall function is the scalable
wall function (SWF) [18]. With this approach, if the near-wall cell
happens to be in the viscous sub layer, boundary conditions are
imposed as if the cell were at the very edge of the viscous sub layer.
The log law is still used to compute the wall shear stress, however
the requirement that the near-wall cell centre lie in the logarithmic
region of the boundary layer has been removed. For this reason,
and also because of its simplicity, the SWF is a commonly used wall
function. However the wall function cannot account for pressure
gradients, and is invalid in flows where separation occurs.

In recent years, more sophisticated wall functions have been
developed to try to further improve the range of validity of wall
functions. One such example is the analytical wall function [12].
This wall function assumes a piecewise linear variation of the tur-
bulent viscosity near to the wall, which permits analytical integra-
tion of the momentum boundary layer equations across the
boundary layer. This wall function does not explicitly use the log
law. In addition, the pressure gradient is included in the integra-
tion, which improves the accuracy of the boundary conditions
compared to log law-based approaches. This wall function is not
widely used in industrial CFD codes because the analytical expres-
sions are rather long and cumbersome, especially since special
treatment is required if the near-wall cell centre lies in the viscous
sublayer. Moreover it is difficult to generalise this approach to
unstructured codes.

Another example of an improved wall function is the numerical
wall function (NWF) [11], which does not assume a viscosity pro-
file. A one-dimensional numerical grid is used to solve a simplified
version of the momentum equations in every near wall cell. This
means that the NWF is, in general, more accurate than the AWF.
However, this wall function suffers from stability issues [17].
Implementation of this approach also requires significant modifi-
cations to the underlying CFD code, and is fraught with technical
issues in unstructured codes.

The alternative to using wall functions is to use a near-wall
domain decomposition (NDD) method [36]. With NDD approaches,
the computational domain is split into an outer region and the
inner region, which is near to the wall. In contrast to wall func-
tions, which are intrinsically mesh-dependent [16], the NDD
approach seamlessly merges the solution in the inner and outer
regions via mesh-independent interface boundary conditions
(IBCs).

In this paper a NDD approach is used in which IBCs [1,33–35,37]
are applied on the interface between the inner and outer regions.
IBCs are calculated using a boundary layer equation in the inner
region to transfer the wall boundary condition to the interface.
This leads to a Robin type boundary condition at the interface.
The full form of the pressure gradient and other source terms can
be included in the calculation of the IBCs.

IBCs can be calculated for both HRN and LRN models. In the case
of HRN models, the interface should be located sufficiently far from
the wall so that the HRN model is applicable in the outer region.
This restriction is analogous to the requirement with wall func-
tions that the near-wall cell centre be in the fully turbulent part
of the boundary layer. In the case of LRN models, there is no lower
restriction on the location of the interface boundary. As the inter-
face boundary approaches the wall, the IBCs tend to the original
wall boundary conditions without any modification.

The LRN solution is optimal in that it offers the highest accuracy
available with RANS modelling, however the LRN solution takes
the most computation time to calculate. On the other hand, the
HRN solution is optimal in that the simulation is fastest, however
the accuracy is in general the worst. The NDD solution allows a
trade-off to be made between accuracy and computation time. As
the distance from the interface boundary to the wall increases
the computational time reduces since the mesh size decreases,

however the accuracy of the solution also decreases. Hence as y�

changes, NDD provides all Pareto solutions, whilst the LRN and
HRN solutions represent the two extreme (ideal) solutions.

IBCs are expressed in mesh-independent form and contain no
free parameters. The only requirement is an approximation of
the turbulent viscosity in the inner region. The more accurate this
profile is, so the more accurate the NDD solution will be. Many
near-wall turbulent viscosity profiles are based on the wall shear
stress [8,2] and produce accurate results in one-dimensional
regions of flow. However if there are separation points in a flow,
then these profiles fail and other profiles must be used. In this
work, a turbulent viscosity profile is chosen that depends on the
pressure gradient [14]. This is shown to produce accurate results
even in regions of flow recirculation.

Previously IBCs have only been applied to the k� e model
[33,35,37]. The k� e model is one of the earliest turbulence models
and is known to perform poorly in many situations, such as in
regions with adverse pressure gradients or streamline curvature,
rotating flows and flows with heat transfer [28,31]. In this paper,
IBCs are applied to the k�x SST [26], Spalart–Allmaras [32] and
BL-v2=k [4] models for the first time.

The paper begins in Section 2 by deriving the IBCs used with the
NDD approach. Implementation of IBCs with the three turbulence
models used is explained in Section 3. Details of the computational
code used in this work are given in Section 4. The four test cases
studied in this work are discussed in Section 5. These are: a plane
channel flow, two different annulus flows and an asymmetric,
two-dimensional diffuser. In the case of the two annuli, heat trans-
fer data are reported. A comparison of the computation time for the
NDD approach and conventional LRN models with and without
wall functions is given for the case of the diffuser. The conclusions
are given in Section 6.

2. Near-wall domain decomposition and interface boundary
conditions

The governing RANS equation for a function U can usually be
written

@ðqUÞ
@t

þr � qUUð Þ ¼ r � CUrUð Þ þ F; ð1Þ

where q is the density, U is the velocity and F is any source terms.
For brevity, the diffusion coefficient for the function U is written as

CU �
l
rU
þ lt

rt;U
; ð2Þ

where l is the dynamic viscosity, lt is the turbulent viscosity, rU is
the Prandtl number for U and rt;U is the turbulent Prandtl number
for U. The function U could be a velocity component, transported
scalar or function from a turbulence model. It is assumed that U
obeys a Dirichlet boundary condition at the wall.

In the near-wall region, 0 6 y 6 y�, Eq. (1) can be written as

@

@y
CU

@U
@y

� �
¼ RUðyÞ: ð3Þ

The full form of the right hand side, RUðyÞ, contains wall-parallel dif-
fusion, the convection terms and any source terms. In many situa-
tions, it is a good-enough approximation to ignore wall-parallel
diffusion and convection in the inner region [12,23,30]. This
approximation is made in this work. Under such approximations,
the form of RU for the U velocity component is RUðyÞ ¼ Px, where
Px is the streamwise pressure gradient. It is stressed, however, that
convection and wall-parallel diffusion need not be neglected. In
contrast, conventional wall functions, such as the SWF, typically
require that RU ¼ 0.
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