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a b s t r a c t

This paper presents an extension of the robust and accurate finite volume method (FVM), so-called VPM
(Volume integrated average and Point value based Multi-moment) method, to structured and unstruc-
tured grids with arbitrary quadrilateral and hexahedral mesh elements. The VPM method treats two dif-
ferent discretized moments of the physical fields, i.e. the volume integrated average (VIA) and the point
values (PV) at the vertices of each cell, as the computational variables, which distinguishes it from con-
ventional FVM. Given the local degrees of freedom in terms of VIA and PVs, we have properly designed
the interpolation polynomials of reconstruction for quadrilateral and hexahedral mesh elements, which
are then used to build a numerical formulation for incompressible viscous fluid dynamics. Numerical
results of benchmark tests in both 2 and 3 dimensions are presented to verify the accuracy and robust-
ness of the proposed method, which shows significant improvement in comparison with conventional
FVM. The proposed formulation provides a practical solver that is well-balanced between numerical
accuracy and algorithmic complexity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The finite volume method (FVM) has become a major approach
of computational fluid dynamics (CFD) for a wide spectrum of
engineering applications in presence of complex geometrical con-
figurations. In case the velocity of fluid particles is sufficiently
smaller than the sound speed, the fluid can be adequately modeled
by the incompressible approximation. The most widely used con-
ventional numerical methods for incompressible flows are based
on a solution procedure that directly couples the pressure with
the velocity to ensure the divergence-free condition for incom-
pressible flows. Some representatives found in the literature are
the projection method [1], MAC (Marker and Cell) [2] method, SIM-
PLE (Semi-Implicit Method for Pressure-Linked Equations) method
[3], SIMPLEC(SIMPLE Corrected) method [4], PISO(Pressure Implicit
with Splitting Operators) method [5] and artificial compressibility
method [6]. Improvements on these methods have been reported
so far. We mention a few in [7–12] among numerous publications.
More comprehensive reviews can be found in monographies on
this topic, like [13,14].

Although variety of higher order spatial discretizations have
been proposed, the pressure based projection approach finds its

most popular implementation in conjunction with the FVM which
forms the basic numerical frameworks of the most CFD codes in
current use. In principle, FVM can be adopted not only to
structured grids but also to unstructured grids with any type mesh
cells. Regarding the spatial discretization, although the second-
order FVM on unstructured meshes has been accepted to be a good
trade-off between computational complexity and numerical
accuracy in practical applications, some remaining problems, for
example the dependency of solution quality on computational
mesh and the poor accuracy in advection computation, still
deserve further efforts for more accurate and robust formulations.

In the conventional FVM, where the volume average value is the
only discretized computational variable that is updated in time, the
numerical solution is highly dependent on the quality of computa-
tional grids, which is usually raised in terms of orthogonality,
skewness and aspect ratio of the mesh cell. Another remaining
issue to be addressed is that generating the interpolation recon-
struction beyond the linear function for the conventional FVM in
an unstructured grid is not a trivial task.

We have recently developed a finite volume formulation with
improved accuracy and robustness in [15] by adding the point val-
ues (PV) at the cell vertices as another computational variable,
which is a discretized moment of the physical field different from
the volume integrated average (VIA). The formulation, so-called
Volume integrated average and Point value based Multi-moment
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(VPM) method, improves significantly the accuracy and robustness
of the numerical solution with a modest increase in the algorithmic
complexity. We presented VPM method for cells of triangle and
tetrahedron in [15] and showed that the VPM method is a practical
formulation that well balances the solution quality and the compu-
tational cost. On other hand, it is well known that a grid with tri-
angular and tetrahedral cells tends to degrade the solution
quality and might be not adequate for applications where mesh
cells of large aspect ratio are more preferable.

This paper presents a VPM scheme particularly designed for
quadrilateral (2D) and hexahedral (3D) unstructured grids. It is
well known that the quadrilateral/hexahedral grid allows high
aspect ratio and the cells can be stretched along the main stream
direction without significant loss in numerical accuracy, and thus
much demanded in many applications in comparison with the tri-
angular/tetrahedral grid. Extending the existing VPM formulation
to quadrilateral/hexahedral grid, however, is not straightforward
with the limited number of degrees of freedom (DOF) available
for reconstruction. Special attention is needed in designing the
multi-moment interpolation function.

In this paper, we present the newly designed quadratic multi-
moment interpolation polynomials for quadrilateral and hexahe-
dral cells by adding new constraint conditions in terms of the first
and second derivatives of the physical field. Using this new recon-
struction functions, we developed numerical solvers for incom-
pressible Navier–Stokes equations in both two and three
dimensions. Systematic benchmark tests have been carried out to
verify the proposed method as a more accurate and robust option
in comparison with the conventional FVM.

This paper is organized as follows. The numerical formulation is
presented in Section 2. Numerical tests are given in Section 3 to
verify the accuracy and the robustness of the present method in
comparison with other conventional FVMs. This paper ends with
some conclusion remarks in Section 4.

2. Numerical formulation on quadrilateral and hexahedral
mesh cells

The target equations to be solved in this study is the incom-
pressible unsteady Navier–Stokes equations,

@u
@t
þrðu� uÞ ¼ � 1

q
rpþ mr2u; ð1Þ

r � u ¼ 0; ð2Þ

where u ¼ ðu;v;wÞ is the velocity vector with components u, v and
w in x; y and z directions respectively. p is the pressure, q the den-
sity and m the kinematic viscosity.

We use the projection method of Chorin [1] as a simple and
robust solution procedure to solve Navier–Stokes equations (1)
under divergence-free constraint (2) for incompressible flow. The
major concern in this paper is the spatial discretization that
involves both VIA and PV as the computational variables.

The underlying concept in this paper is the same as that in [15].
However, the numerical details in quadrilateral and hexahedral
grids are substantially different from the triangular and tetrahedral
grids. In order to make the present paper self-contained and to
enable the readers to follow the algorithmic details, we present
the numerical formulation in line with that in [15].

2.1. The computational mesh

In the two dimensional case, the computational domain is
divided into non-overlapping convex quadrilateral cells
Xi ði ¼ 1; . . . ;NeÞ with four vertices hijðj ¼ 1;2;3;4Þ located at
ðxi1; yi1Þ, ðxi2; yi2Þ, ðxi3; yi3Þ and ðxi4; yi4Þ respectively as shown in

Fig. 1. The mass center of Xi is denoted by hic . The four boundary
line segments of element Xi are denoted by Ci1 ¼ hi4hi1,
Ci2 ¼ hi2hi3, Ci3 ¼ hi1hi2 and Ci4 ¼ hi3hi4. The middle points and the
outward normal unit vector of segment Cij is denoted by ~hij and
nij ¼ ðnxij;nyijÞ respectively.

Being the computational variables, the volume-integrated
average (VIA) and point-value (PV) at the cell vertices of a physical
variable /ðx; y; tÞ are defined as:

�/iðtÞ �
1
jXij

Z
Xi

/ðx; y; tÞdX;

/ijðtÞ � /ðxij; yij; tÞ; j ¼ 1;2;3;4;

ð3Þ

where jXij denotes the volume of cell element Xi.
For simplicity, mesh cell Xi is mapped onto a standard element

x � ½�1 6 n;g � 1� in the local coordinate ðn;gÞ where vertices
hijðj ¼ 1;2;3;4Þ ¼ ðnj;gjÞ correspond to (�1,�1), (�1,1), (1,1) and
(1,�1). The transformation is given in terms of the shape functions,
N j ¼ 1

4 ð1þ njnÞð1þ gjgÞ. So, the global coordinate can be expressed
in terms of local coordinate system by

x ¼ N 1xi1 þN 2xi2 þN 3xi3 þN 4xi4;

y ¼ N 1yi1 þN 2yi2 þN 3yi3 þN 4xi4:
ð4Þ

It is straightforward to arrive at the formula to compute the
first-order derivatives in respect to x and y in the original
coordinate system by the local coordinate,

/xiðn;gÞ ¼
1

jJiðn;gÞj
ygiðn;gÞ

@/iðn;gÞ
@n

� yniðn;gÞ
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@n
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@g

� �
;

ð5Þ

where jJiðn;gÞj ¼ xniðn;gÞygiðn;gÞ � xgiðn;gÞyniðn;gÞ is the determi-
nant of the Jacobian matrix.

The metric terms of mapping (5) are directly obtained by

xni ¼ 1
4 ð�xi1 þ xi2 þ xi3 � xi4 þ ðxi1 � xi2 þ xi3 � xi4ÞgÞ

xgi ¼ 1
4 ð�xi1 � xi2 þ xi3 þ xi4 þ ðxi1 � xi2 þ xi3 � xi4ÞnÞ

yni ¼ 1
4 ð�yi1 þ yi2 þ yi3 � yi4 þ ðyi1 � yi2 þ yi3 � yi4ÞgÞ

ygi ¼ 1
4 ð�yi1 � yi2 þ yi3 þ yi4 þ ðyi1 � yi2 þ yi3 � yi4ÞnÞ

8>>><>>>: ; ð6Þ

and

jJiðn;gÞj ¼ 2jXij ¼ xniygi � xgiyni: ð7Þ

2.2. The multi-moment reconstruction

We use the following piecewise reconstruction polynomial for
physical field /ðx; yÞ on cell Xi in the local coordinate,

Fig. 1. The two dimensional quadrilateral mesh element.
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