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a b s t r a c t

In this paper, we propose a second order penalized direct forcing method to deal with fluid–structure
interaction problems involving complex static or time-varying geometries. As this work constitutes a first
step toward more complicated problems, our developments are restricted to Dirichlet boundary condi-
tion in purely hydraulic context. The proposed method belongs to the class of immersed boundary tech-
niques and consists in immersing the physical domain in a Cartesian fictitious one of simpler geometry on
fixed grids. A penalized forcing term is added to the momentum equation to take the boundary conditions
around/inside the obstacles into account. This approach avoids the tedious task of re-meshing and allows
us to use fast and accurate numerical schemes. In contrary, as the immersed boundary is described by a
set of Lagrangian points that does not generally coincide with those of the Eulerian grid, numerical pro-
cedures are required to reconstruct the velocity field near the immersed boundary. Here, we develop a
second order linear interpolation scheme and we compare it to a simpler model of order one. As far as
the governing equations are concerned, we use a particular fractional-step method in which the penal-
ized forcing term is distributed both in prediction and correction equations. The accuracy of the proposed
method is assessed through 2-D numerical experiments involving static and rotating solids. We show in
particular that the numerical rate of convergence of our method is quasi-quadratic.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid flow with heat and mass transfer around complex station-
ary or moving geometries (solid or flexible) appears in a large num-
ber of situations of practical interest including biological fluid
mechanics (blood flow in human heart for instance) or in life-sci-
ence context (the fish-like swimming e.g.). Fluid–structure interac-
tion problems are also of importance in many engineering
applications, as for example, to design industrial heat exchangers,
aerospace vehicles or in nuclear safety context. In this latter case,
the vitrification process for the radioactive waste storage is an
example. In this process, a viscous multiphase multicomponent
flow at high temperature (gas bubbles and molten glass incorpo-
rating the ultimate waste) interacts with both static (e.g. the vessel
structure, the apparatus of measurement, etc.) and moving (e.g. the
mechanical stirrer) bodies of more or less complex geometries.

The numerical treatment of these kinds of problem appears to
be a challenging task because of time-varying geometries, often
combined with complex flow regimes. To tackle numerically these
complex problems, the well-known body-fitted approach is usually
followed. Such an approach consists in discretizing the governing

equations on a non-structured mesh for which the boundaries of
the computational domain lie on those of the physical domain.
Thereby, boundary conditions are directly (and so, exactly) im-
posed on the physical domain boundary. However, the main draw-
back of the body-fitted like techniques lies in their lack of ability to
handle complex industrial problems involving moving bodies
which require the development of specific numerical schemes to
deal with the difficult issue of re-gridding.

Another approach consists in using non-boundary conforming
techniques in which the physical domain is immersed in a fixed fic-
titious one of simpler geometry on a Cartesian grid. Such tech-
niques allow us to use efficient, fast and accurate numerical
methods avoiding the tedious task of the re-meshing caused by
time-varying geometries. In contrast, as the immersed boundaries
are described by a set of Lagrangian points (or the zero of a level-
set function) that do not generally coincide with those of the Eule-
rian grid, numerical methods have to account for the immersed
boundary conditions at their right places. The non-boundary con-
forming techniques proposed in the literature may be classified
into two categories.

The first category, including for instance Cartesian methods (e.g.
[1,2]), the Immersed Interface Method (IIM, [3]) or the Jump
Embedded Boundary Condition method (JEBC, [4]), mimics the
presence of embedded geometries by modifying the numerical
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scheme in the immediate vicinity of the immersed boundary or
interface. The two latter methods introduce jump conditions across
the interface in the solve of the partial differential equations. Such
an approach leads to a sharp representation of the immersed inter-
face but, for the Cartesian method, extending it to three-dimen-
sional problems may appear to be a challenging task, particularly
regarding the coding logistic.

In the second category (rather than locally modifying the
numerical scheme) a supplementary term, referred to as the forc-
ing term, is added to the governing equations. This class of non-
boundary conforming techniques dates back to Peskin’s works in
which an Immersed Boundary Method (IBM) has been developed
to numerically simulate blood flows in a human heart [5]. In this
case, the immersed boundaries correspond to muscular heart walls
and extra forces acting in these boundaries are modeled by a vec-
torial forcing term added to the continuous Navier–Stokes equa-
tions. A Lagrangian coordinate system is employed to track the
interface and to calculate the vectorial forcing term. The IB method
has been successfully applied to problems with elastic geometries
but, in the rigid limit, it generally leads to very stiff problems.
Moreover, in order to ensure the stability of the numerical scheme,
the forcing term based on a Dirac delta function must be smeared
over a stencil of few Cartesian nodes. Following the ideas intro-
duced by Peskin, several IB-like methods with different forcing
terms (or forcing strategies) have been proposed in the literature.
In [6], Goldstein et al. propose the Feedback Forcing (FF) method
in which the forcing term can be viewed as a force density that
brings the fluid velocity to zero near the immersed boundary. Sim-
ilarly to what is done in [5], the numerical scheme used in [6] re-
quires a spreading of the forcing term over the interface. Moreover,
the FF method suffers from the fact that the forcing term highly de-
pends on flow properties. Whether the Peskin’s IB method or the FF
method, their application to flows at high Reynolds number is lim-
ited by the spreading of the forcing term over the immersed
boundary. In this case, local mesh refinement techniques can be
a solution [7]. An alternative approach to the aforementioned tech-
niques, referred to as Direct Forcing (DF) method, has been pro-
posed by Mohd-Yusof [8] and then adapted by Fadlun et al. [9].
This immersed boundary technique consists in directly applying
the desired boundary conditions on Cartesian nodes close to the
interface leading to a quasi sharp representation of the interface
(through one cell layer). In that sense, using the terminology em-
ployed by Gilmanov et al. in [10], the DF method may be referred
to as a Hybrid Cartesian/Immersed Boundary (HCIB) approach
and may be conceptually related to the IIM. Moreover, one of the
interest of the DF method is that the forcing term can be easily
computed and it does not depend on the flow properties. There-
fore, the stability of the numerical scheme is not affected. How-
ever, the accuracy of the DF method is partially dependent on
the numerical scheme because the calculation of the forcing term
is in particular based on the discretized form of the governing
equations. Since its development by Mohd-Yusof [8], the DF meth-
od has gained in popularity and has been successfully applied to
various fluid–structure interaction problems (e.g. [10–15]) or tur-
bulent flow simulations (e.g. [16,17]) using mesh refinement or
mesh stretching techniques. It is also worth to mention the im-
mersed boundary method of Pinelli et al. [18], that has roots in
both IBM and DF methods, and which is suitable for general grid
systems including curvilinear ones. More recently, Belliard and
Fournier [19] have proposed a variant of HCIB techniques, called
Penalized Direct Forcing (PDF) method, that combines both the ba-
sic features of the DF method and those of L2-penalty methods (e.g.
[20]). Links can be found with the works of Sarthou et al. [21] and
those of Bergmann and Iollo [22]. As for the DF method, the un-
knowns are locally enforced on the grid nodes nearest the im-
mersed interface. However, the PDF method appears to be a

more versatile approach than the DF method because the forcing
term expresses as a L2-penalty term that is independent on the dis-
crete governing equations.

In the present paper, after introducing the discretization of the
Navier–Stokes governing equations in the Section 2, the PDF algo-
rithm is detailed in the Section 3, including a specific treatment of
the pressure near the immersed boundaries. The PDF method itself
is presented in Section 3.1. Interesting for practical purposes, the
non-boundary conforming approaches are often coupled with frac-
tional-step schemes (e.g. [23,24]) but, as emphasized by Ikeno and
Kajishima [25] or Taira and Colonius [26], most of them take ac-
count of the forcing term only in the prediction equation leading
to inconsistent schemes. Here, an original fractional-step scheme
leading to a consistent (in the sense of [25]) PDF method is devel-
oped and presented in Section 3.2. Homogeneous Neumann IBCs
for the pressure are recovered through a particular treatment of
the pressure equation coefficients near the immersed interface.

Whatever the non-boundary conforming method involved, an
important issue concerns the reconstruction of the velocity field
close to the immersed boundary and the accuracy of the numerical
method developed for this purpose. These points have received a
particular attention in the literature with, most of the time, the
development of interpolation schemes. Most of the classical ap-
proaches consist in interpolating or extrapolating the velocity field
in a preferred direction (e.g. [10,12]). In this work, we have devel-
oped an original robust interpolation scheme, second-order accu-
rate in space, that is not guided by particular direction. It relies
mainly on an averaged reconstruction of the velocity gradient near
the IB and on an approximate projection operator onto the IB.
Without loss of generality, we restrict our presentation to Dirich-
let’s IBCs for the velocity.1 This is the object of Section 4.

Finally, in Section 5, some 2-D numerical experiments are per-
formed for steady and unsteady incompressible laminar flows at
very moderate Reynolds number (up to 100) around/between sta-
tic and rotating solids to assess the validity, accuracy and the abil-
ity of the proposed method for both uniform and analytically
velocity prescribed at IBs. We show in particular that the numeri-
cal rate of convergence is (quasi-) quadratic for all studied cases. To
highlight the ability of our method to deal with 3-D moving com-
plex geometries, we also present an illustration of flows induced by
a stirrer.

2. Governing equations and numerical method

The section is devoted to the numerical method. It is structured
in two parts. The first part focuses on the governing equations
whereas the numerical scheme is the object of the second part.

2.1. Governing equations

The governing equations used to describe unsteady incompress-
ible flows are given by:

@u
@t
þr � ðu� uÞ þ rP � mr2u ¼ f in X ð1aÞ

r � u ¼ 0 in X ð1bÞ
u ¼ uD on @X and uðt0Þ given in X ð1cÞ

where X denotes the computational domain, @X its boundary, u the
solenoidal velocity and m the kinematic viscosity. Here-above, P is
the total pressure defined by:

qrP ¼ rp� qg ð2Þ

1 Neumann IBCs can be also considered by interpolations involving the prescribed
flux at the boundary and the velocities of the surrounding flow.
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