Energy Conversion and Management 112 (2016) 49-60

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Design of a novel concentrating photovoltaic-thermoelectric system incorporated with phase change materials

Tengfei Cui^a, Yimin Xuan^{a,b,*}, Qiang Li^a

^a School of Energy and Power Engineering, Nanjing University of Science & Technology, China
^b College of Energy and Power Engineering, Nanjing University of Aeronautics & Astronautics, China

ARTICLE INFO

Article history: Received 7 October 2015 Accepted 5 January 2016 Available online 13 January 2016

Keywords: Solar energy utilization Photovoltaic cells Thermoelectric modules Phase change material PV-PCM-TE system

ABSTRACT

Since the solar irradiance within a day is varying, the temperature of the photovoltaic-thermoelectric (PV-TE) system becomes fluctuant with the change of the incident solar irradiance, which exerts a significant influence on the efficiency of the total system. In this paper, the phase change material (PCM) is introduced into the PV-TE system to construct a novel PV-PCM-TE hybrid system. The purposes of applying PCM are to mitigate the temperature fluctuations of the PV cell and the TE modules and keep the hybrid PV-TE system operating under a fixed operating condition. A theoretical model of evaluating the efficiency of the concentrating PV-PCM-TE hybrid system is presented. The feasibility of the PV-PCM-TE system with four types of PV cells, c-Si, CIGS, single-junction GaAs, and GaInP/InGaAs/Ge (III-V), are investigated. The optimum operating conditions which indicate that the PV-PCM-TE system has the highest total efficiency are discussed to determine the melting temperatures of PCMs. A series of structure parameters are designed to obtain the optimized parameters for the PV-PCM-TE system, and the influences of these parameters on the PV-PCM-TE system are investigated. The results indicate that the performance of the PV-PCM-TE system is superior to single PV cells and/or PV-TE systems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Solar energy which is currently one of the most renewable and potential energy sources has been widely focused and investigated. However, only a limited solar energy incident on a photovoltaic (PV) cell can be converted into electricity; the remaining absorbed solar energy has to be transformed into heat, which is not only a waste of energy but also an adverse influence factor for the PV cell converting solar energy into electricity [1]. Therefore, reutilization of this part of exhaust heat and further improving the efficiency of utilizing solar energy becomes an attractive problem and receives more and more attentions.

Recently, a so-called hybrid photovoltaic-thermoelectric (PV–TE) system has been proposed, which implies enhancement on the total efficiency of utilizing solar energy [2–12]. Wang et al. [6] measured the conversion efficiency of a hybrid PV–TE system which was combined by the series-connected dye-sensitized solar cell (DSSC), a solar selective absorber (SSA), and a TE generator. They found that compared with the referenced efficiency 9.39% of the DSSC, the maximum entire efficiency of the entire PV–TE

E-mail address: ymxuan@mail.njust.edu.cn (Y. Xuan).

system amounted to 13.8%. Hsueh et al. [7] investigated the performance of the PV-TE system formed by the CuInGaSe2 (CIGS) PV cell and a TE generator, the maximum total efficiency of the whole hybrid system increased from 16.5% to 22.02%. Zhang et al. [8] developed a theoretical model of the concentrating PV-TE hybrid system. By using fins as cooling device, the enhancement of 1-8% on the total efficiency of utilizing solar energy was realized compared with the pure PV system. A similar simulation was found in the work of Liao et al. [9], the difference between their work and the studies from Zhang's group [8] was that the matched load resistances in the PV-TE system were discussed. Moreover, Dallan [10] experimentally investigated the viability of a PV-TE system. The experimental results showed that the output power of the PV-TE system increased up to 39% under the fixed thermal input conditions compared with the PV module's operating performance in the absence of the TE module. For most of the aforementioned investigations, the PV-TE systems were mostly tested or simulated under the laboratory environment (AM 1.5) which implies a constant solar irradiance 1000 W/m². At this situation, the operating temperature of the PV-TE system may be kept at a constant value. In fact, the solar irradiance during a day changes along the time and the operating temperature of the PV-TE system varies with the changes of solar irradiance as consequence. Wu et al. [11] studied the performance of a PV-TE system by using the nanofluid as

^{*} Corresponding author at: School of Energy and Power Engineering, Nanjing University of Science & Technology, China. Tel.: +86 025 84890688.

Nomenclature

Α	area (mm ²)	Nu	Nusselt number
h	height (mm)	Re	Reynolds number
l	the length of channels (mm)	Pr	Prandtl number
A _c	the cross sectional area of channels (mm ²)	D_h	the hydraulic diameter of channels (mm)
T	temperature (K)	f	friction factor
T _{wi}	temperature of water at the inlet (K)	R_a	root mean square roughness of the chann
Two	temperature of water at the outlet (K)	u, v, w	velocity (m/s)
T _{wm}	mean temperature of the water (K)	x, y, z	coordinate (m)
т	the number of channels	-	
Cp	thermal capacity (J/kg K)	Greek lei	tters
R	thermal resistance (mm ² K/W)	ħ	Planck constant $(6.63 \times 10^{-34} \text{ Js})$
R_c	thermal contact resistance (mm ² K/W)	$\alpha(\lambda)$	absorption coefficient (m^{-1})
h_w	convection heat transfer coefficient of water (W/mm ² K)	β	temperature coefficient (K^{-1})
h _{air}	convection heat transfer coefficient of air (W/mm ² K)	δ_{SB}	Stefan–Boltzmann constant (5.67 \times 10 ⁻⁸ V
$1/h_r$	radiation thermal resistance (mm ² K/W)	8	dielectric constant (F m ⁻¹)
Р	power (W)	n	efficiency (%)
t	time (s)	λ	wavelength of photon (μm)
С	optical concentrating ratio	μ_n	carrier mobility $(cm^2 V^{-1} s^{-1})$
C_{th}	thermal concentrating ratio	ϕ	electrostatic potential (V)
G	optical generation rate	τ	relaxation time (s)
J	current density (mA cm ^{-2})	μ	viscosity (mm ² /s)
N _A	acceptor doping concentration (cm ⁻³)	ρ	density (kg/m ³)
N_D	donor doping concentration (cm ⁻³)		
N _C	the effective densities of electrons (cm ⁻³)	Subscrip	ts
N_V	the effective densities of holes (cm ⁻³)	lens	Fresnel lens
$I(\lambda)$	the solar irradiance spectrum $(cm^2 s^{-1})$	PV	photovoltaic cell
С	speed of light (m/s)	РСМ	phase change material
k_B	Boltzmann constant $(1.38 \times 10^{-23} \text{ J K}^{-1})$	TE	thermoelectric generators
E_g	the band-gap energy (eV)	hs	heat sink
к	thermal conductivity (W/m K)	ритр	pump
n _i	the intrinsic carrier concentration (cm ⁻³)	'n	electron or the <i>n</i> -type material
р	free hole concentration (cm ⁻³)	р	hole or the <i>p</i> -type material
n	free electron concentration (cm 3)	w	water
R _{re}	Carrier recombination rate (cm ^o s ⁻¹)	air	air
K _{SRH}	Snockley-Read-Hall recombination	r	radiation
R _{Aug}	Auger recombination	L	liquid phase of phase change material
1	temperature (K)	S	solid phase of phase change material
ZI	the dimensionless thermoelectric coefficient	ир	up side surface
E	neat absorbed by phase change material	down	down side surface
H	the latent heat of phase change material		
T_m	the melting temperature of phase change material		

ion factor mean square roughness of the channels (μm) city (m/s) dinate (m) tck constant (6.63 \times 10⁻³⁴ [s) orption coefficient (m^{-1}) perature coefficient (K⁻¹) an–Boltzmann constant (5.67 \times 10^{-8} W m^2 $K^4)$ ectric constant (F m⁻¹) iency (%) elength of photon (μm) ier mobility ($\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$) trostatic potential (V) xation time (s) osity (mm²/s) sity (kg/m^3) nel lens tovoltaic cell se change material moelectric generators sink D tron or the *n*-type material or the *p*-type material er ation id phase of phase change material phase of phase change material ide surface n side surface

the coolant in the PV-TE system under a daily changed solar irradiance. The results showed that compared with the forced air cooling method, cooling the PV-TE system with the nanofluid can significantly improve the efficiencies of the PV-TE system. However, the efficiency and the temperature of the PV-TE system were still fluctuant due to the changes of solar irradiance, which induced a series of questions related to the practical applications of the PV-TE system in a realistic situation, such as the designs of structure sizes of the PV-TE systems, the matching of the load resistance [12], and the controls of the cooling system of the PV-TE system [11]. Therefore, it is necessary to weaken the influence of fluctuant solar irradiance on the PV-TE system, and make sure that the PV-TE system operates under the optimal operating status.

To suppress the temperature fluctuation of a PV-TE system induced by the fluctuant solar irradiance, one of alternative methods is using phase change materials (PCM). This is because that PCM can absorb a large amount of energy as latent heat at a constant phase transition temperature, and thus be widely used for passive heat storage and temperature control of electronics [13]. Recently, PCMs are more and more incorporated with photovoltaic devices to improve their conversion performance. Huang et al. [14–16], Maiti et al. [17] and Aelenei et al. [18] numerically and experimentally investigated the performance of a PV-PCM system. All these efforts indicated that using PCM can maintain the system operating under a steady-state and low temperature fluctuation during the day time, and then generate a greater electrical power output. In addition, Malvi et al. [19] proposed the concept of a combined photovoltaic thermal (PVT)-PCM system. By using water cooling, they found that the PCM further mitigated the temperature rise of the PV cell, so that the PV cell operated at a steadystate temperature during a day.

Therefore, in order to eliminate the influence induced by the fluctuant solar irradiance on the PV-TE system, PCM is introduced into the PV-TE system in this paper to construct a novel hybrid PV-PCM-TE system. A theoretical model of the PV-PCM-TE hybrid system is presented to evaluate its performances under different conditions. The feasibility of a PV-PCM-TE system operating under

Download English Version:

https://daneshyari.com/en/article/763485

Download Persian Version:

https://daneshyari.com/article/763485

Daneshyari.com