
A combination of dynamic measurement protocol and advanced
data treatment to resolve the mixtures of chemically similar analytes
with potentiometric multisensor system

Dmitry Kirsanov a,b,n,1, Xavier Cetó c,1, Maria Khaydukova a, Yulia Blinova a, Manel del
Valle c, Vasily Babain b,d, Andrey Legin a,b

a Chemistry Department, St. Petersburg State University, Universitetskaya nab. 7/9, Mendeleev Center, 199034 St. Petersburg, Russia
b Laboratory of Artificial Sensor Systems, St. Petersburg National Research University of Information Technologies, Mechanics and Optics,
Kronverkskiy pr. 49, St. Petersburg 197101, Russia
c Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, Bellaterra, Barcelona 08193, Spain
d Khlopin Radium Institute, 2nd Murinsky prospect 28, St. Petersburg 194021, Russia

a r t i c l e i n f o

Article history:
Received 14 July 2013
Received in revised form
30 October 2013
Accepted 3 November 2013
Available online 13 November 2013

Keywords:
Multisensor systems
Lanthanides
Mixture analysis
Chemometrics

a b s t r a c t

Data processing techniques and measuring protocol are very important parts of the multisensor systems
methodology. Complex analytical tasks like resolving the mixtures of two components with very similar
chemical properties require special attention. We report on the application of non-linear (artificial neural
networks, ANNs) and linear (projections on latent structures, PLS) regression techniques to the data
obtained from the flow cell with potentiometric multisensor detection of neighouring lanthanides in the
Periodic System of the elements (samarium, europium and gadolinium). Quantification of individual
components in mixtures is possible with reasonable precision if dynamic components of the response
are incorporated thanks to the use of an automated sequential injection analysis system. The average
absolute error in prediction of lanthanides with PLS was around 1�10�4 mol/L, while the use of ANNs
allows the lowering of prediction errors down to 2�10�5 mol/L in certain cases. The suggested protocol
seems to be useful for other analytical applications where simultaneous determination of chemically
similar analytes in mixtures is required.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

There are a number of analytical applications that require quanti-
tative analysis of mixtures, where the constituents have a very similar
chemical nature. As an example, one can consider lanthanides
determination in various technological solutions or in PUREX (Pluto-
nium–Uranium Extraction) process raffinate of spent nuclear fuel
reprocessing. Being close neighbors in the Periodic System of the
elements, lanthanides have closely similar chemical properties and the
task of their simultaneous determination can be effectively handled
with “heavy” instrumental methods, such as e.g. ICP-MS (inductively
coupled plasma mass spectrometry). However, these ICP-based meth-
ods are usually hard to implement in on-line mode and they require
significant amount of consumables, skilled personnel and long sample
preparation. There is a need for simple and inexpensive methods
that could allow simultaneous quantification of several chemical

substances of very analogous properties. One of the reasonable
alternatives for existing “heavy” methods could be electrochemical
sensors. There are a lot of reports in literature on the development of
potentiometric sensors for selective determination of lanthanides,
such as cerium [1,2], samarium [3,4], europium [5,6], etc., but the
pH working range reported in these papers is usually around 4–8 pH
units. It is not quite clear which ions promote sensor response at these
pH level, since Me3þ is only present in strongly acidic media. Besides
that the reported selectivity values of such sensors are usually rather
high (log KM,REo�2) even in the presence of neighboring lantha-
nides, and this is quite surprising taking into account very similar ionic
radii and chemical properties of lanthanides. The authors of these
papers usually do not discuss the nature of such outstanding perfor-
mance. In most of the cases the measurements are performed in
individual solutions of the lanthanides. There are reasonable doubts if
the reported data can be extrapolated to the real performance of the
sensors in complex mixtures. One of the possible ways for develop-
ment of fast and inexpensive methods for lanthanides detection is the
employment of a multisensor system approach [7]. The main idea of
this approach (also called as an electronic tongue) is to measure the
samples with an array of chemical sensors with high cross-sensitivity
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towards variety of analytes and to process the resulted unresolved
analytical signal from this array by means of multivariate statistics
techniques [8]. As an output from this system one can have both
qualitative and quantitative chemical information depending on the
scope of study and on the methods employed. This type of systems
was recently successfully applied for simultaneous determination of
rare earth metals (REs) concentrations in complex mixtures simulating
spent nuclear fuel reprocessing media [9]. As a further extension of
this approach it seems reasonable to try an application of such a
system in flow cell conditions. Besides the obvious advantage of
simple automation this type of measurement implementation has
another important issue – a possibility of dynamic potentiometric
measurements, i.e. one can track the evolution of the sensor response
in time, and this kinetic information can be used in data processing.
The shape of the sensor response curve in a time domain can contain
valuable chemical information about the sample and this information
is lost when only stationary signal of sensor is employed for process-
ing. It was shown that this approach is quite viable in other appli-
cations [10–12]. However, dynamic potentiometric data are more
complex in nature compared to the ordinary potentiometric signals
and pose a certain challenge from the data processing point of view.
One of the possible divisions of chemometric techniques (however
quite artificial) is to distinguish linear (e.g. principal component
analysis (PCA) and projections on latent structures (PLSs)) and non-
linear (e.g. artificial neural networks (ANNs) and support vector
machines (SVMs)) methods. Both of these data processing groups
are in use in the multisensor systems field. Furthermore, in [13] a wide
literature survey was performed which revealed that most of the
papers devoted to electronic tongues are mainly dealing with only
three data processing techniques: PCA, PLS and ANN. This confirms
that these methods are powerful and reliable for extracting valuable
chemical information from multisensor system's experimental data.
When quantitative chemical analysis is in sight both linear and non-
linear regression methods can be employed.

This paper is devoted to the comparison study of the linear and
non-linear regression techniques applied to the dynamic potentio-
metric data from double mixtures of chemically similar lanthanide
ions. As linear methods three different PLS modes were imple-
mented: ordinary PLS with stationary potentiometric signals as
input variables, PLS with the whole response curves unfolded over
time axis and multi-way PLS (nPLS) with time axis as a third
dimension in data (samples� sensors� time). As non-linear
methods, different approaches based on artificial neural networks
(ANNs) were evaluated including the use of steady state signal and
the compression of the dynamic profile employing the windowed
slicing integral (Int) method [14].

2. Experimental

2.1. Sensor preparation

The sensor array employed in this study consisted of eight
polymeric PVC-plasticized sensors described previously [9]. Active
compounds for sensor membranes were various neutral ligands
adopted from liquid extraction systems plus chlorinated cobalt
dicarbollide (CCD) as a cation-exchanger. All sensor membranes
contained 50 mmol/kg of a neutral ligand and 10 mmol/kg of CCD
(0.53 wt%). The details on active substances are given in Table 1.
Also each sensor membrane contained 33 wt% of poly(vinylchlor-
ide) (PVC), and the rest was of o-nitrophenyloctyl ether (NPOE) as
a solvent-plasticizer (both PVC and NPOE were Selectophore grade
from Fluka).

Sensor membranes were prepared according to the standard
procedure: weighted amounts of membrane components were
dissolved in freshly distilled tetrahydrofurane (THF) and poured

into a flat-bottomed Teflon beaker and left overnight for solvent
evaporation. Disks 4 mm in diameter and 0.5 mm thick were cut
from the parent membranes and covered on one side with a
suspension of fine graphite powder in a PVC–cyclohexanone
mixture. After drying for 24 h the membranes covered with solid
electric contact composition were mounted in the flow cell and
fixed in the channel with clamping plastic bodies. On the top of
each body there was a gold spot to provide electric contact. Thus
the sensor design employed in this study was similar to the coated
wire type. The resulting sensors were encoded as s1, s2,…, s8 in
the order of appearance above. The whole construction made of
the sensors mounted in the flow cell is shown in Fig. 1.

The flow cell was developed in the framework of FP6 WARMER
project and was produced by MedbrytSp. z o.o (Warsaw). This flow
cell consists of poly(methylmethacrylate) segments (PMMA) that
can be hermetically attached to each other to produce the flow
cell with necessary number of sensors. For this study we used
nine segments, eight for polymeric sensors and one for Ag/AgCl
reference electrode (MedbrytSp. z o.o). Reference electrode was
mounted in the middle of the flow path to minimize electric
resistance of the system. The inner diameter of the flow path was
1 mm.

2.2. Potentiometric measurements

Potentiometric measurements were performed in a sequential
injection system (SIA) which provides the automated operation
and generation of RE metal mixtures, plus the measuring and
data acquisition stages. The SIA system was formed by two diffe-
rentiated parts: the fluidic system and the measurement system
[15,16].

The first part was the fluid system which consisted of an auto-
matic microburette (Crison 2030 microburette, Crison, Spain)
equipped with a 5 mL syringe (Hamilton, Switzerland), a holding
coil (5 m�1 mm i.d. PTFE tubing, Bioblock, France), a 8-way
Hamilton MVP valve (Hamilton, Switzerland) and a 7 mL Perspex
mixing cell (home built) with a magnetic stirrer. The multiport
valve is connected to the burette with the holding coil placed in
between. The burette is fed through a carrier solution reservoir. By
commanded sequence, the common port of the valve may access
any of the other ports which leads to the sample, standard stock
solutions, mixing chamber or sensor array by electrical rotation.
All the elements were connected together using low pressure
liquid chromatography connectors.

The second part was the measurement system that comprised
the sensor array, a reference electrode (miniaturized silver/silver
chloride electrode with a double junction) and an 8-channel
signal conditioning circuit connected to the data acquisition

Table 1
Sensor membrane compositions.

Sensor Active substance Concentration
(wt%)

s1 Tetraphenylmethylendiphosphine dioxide 2.08
s2 Phenyloctyl-N,N-di-i-butylcarbamoylmethylen

phosphine oxide
2.03

s3 1,9-Bis-(diphenylphosphynyl)-2,5,8-trioxanonane 2.67
s4 1,6-Bis-(benzylphenylcarbamoyl)-3-benzo-2,5-

oxahexane
2.78

s5 1,9-Bis-(diphenylcarbamoyl)-2,5,8-trioxanonane 2.62
s6 N,N,N′,N′-tetraoctyldiamide of diglycolic acid 2.90
s7 N, N′-diethyl-N, N′-di-p-tolyldiamide of dipicolinic

acid
1.53

s8 5,11,17,23-Tetra
(diethylcarbamoylethoxymethylcarboxamido)-
25,26,27,28-tetrapropoxycalix[4]arene

6.67
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