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Abstract The modified regularized long wave (MRLW) equation is numerically solved using Four-

ier spectral collection method. The MRLW equation is discretized in space variable by the Fourier

spectral method and Leap-Frog method for time dependence. To validate the efficiency, accuracy

and simplicity of the used method, four cases study are solved. The single soliton wave motion,

interaction of two solitary waves, interaction of three solitary waves and a Maxwellian initial con-

dition pulse are studied. The L2 and L1 error norms are computed for the motion of single solitary

waves. To determine the conservation properties of the MRLW equation three invariants of motion

are evaluated for all test problems.
� 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The regularized long wave (RLW) equation

ut þ ux þ uux � luxxt ¼ 0; ð1:1Þ
where l is a positive constant, is a nonlinear evolution equa-
tion, which was originally introduced by Peregrine (1966) in
describing the behavior of an undular bore and studied later
by Benjamin et al. (1972). This equation plays an important

role in describing physical phenomena in various disciplines,
such as the nonlinear transverse waves in shallow water, ion-
acoustic waves in plasma, magneto–hydrodynamics waves in

plasma, longitudinal dispersive waves in elastic rods, and pres-
sure waves in liquid’s gas bubbles. Many numerical methods

for the RLW equation have been proposed, such as the finite

element method, Galerkin method, collocation methods with
quadratic B-splines, an explicit multistep method, finite differ-
ence methods and Fourier Leap-Frog method (Liu et al., 2013;

Saka and Dag, 2008; Soliman and Raslan, 2001; Mei and
Chen, 2012; Lin et al., 2007; Hassan and Saleh, 2010). The
RLW equation is a special case of the generalized regularized
long wave (GRLW) equation

ut þ ux þ dupux � luxxt ¼ 0; ð1:2Þ
where d and l are positive constants and p is a positive integer.

Various numerical techniques have been used for the solution
of the GRLW equation as (Mohammadi and Mokhtari, 2011;
Kaya, 2004; Roshan, 2012; Hammad and El-Azab, 2015;

Zeybek and Karakoç, 2016). The modified regularized long
wave equation (MRLW) is a special form of GRLW
Eq. (1.2) and it plays a very important role at the modeling
of the nonlinear, dispersive media being modeled feature
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small-amplitude, long-wave length disturbances. The MRLW

equation was also solved using various numerical methods
such as, a Galerkin finite element method, a spline method,
the Adomian decomposition method, a collocation method

with cubic B-splines, finite difference scheme, meshless kernel
based method of lines, B-spline finite elements, mixed Galerkin
finite element methods, Tri-prong scheme, homotopy perturba-
tion method and He’s variational iteration method as Mei et al.

(2014), Raslan and EL-Danaf (2010), Raslan and Hassan
(2009), Khalifa et al. (2007, 2008a,b), Dereli (2012), Gardner
et al. (1997), Gao and Mei (2015), Hosseini et al. (2016),

Achouri and Omrani (2010), Labidi and Omrani (2011). Dis-
cretization using finite differences in time and spectral methods
in space has proved to be efficient in solving numerically non-

linear partial differential equations (PDE) describing wave
propagation. The combined schemes have been applied effi-
ciently to analyze unidirectional solitary wave propagation in
one dimension Korteweg de Vries (KdV) equation as

Fornberg (1996), Fornberg and Whitham (1987), Hassan and
Saleh (2013). The combination of spectral methods and finite
differences is applied to the Boussinesq type which admits bidi-

rectional wave propagation as Hassan (2010), Borluk and
Muslu (2015). The numerical solution for the modified equal
width wave (MEW) equation is presented using Fourier spec-

tral method by Hassan (2016). Different analytical and numer-
ical methods are used to solve differential equations as
Atangana and Cloot (2013), Atangana (2016), Semary and

Hassan (2016), El-Borai et al. (2017). In this study, the combi-
nation of Fourier spectral method in space and leap frog in time
is applied to the modified regularized long wave equation
(MRLW) equation. Consider the MRLW equation

ut þ ux þ 6u2ux � luxxt ¼ 0; ð1:3Þ

where the subscripts x and t denote differentiation, is consid-

ered with the boundary conditions u ! 0 as x ! �1. In this
study, boundary conditions are chosen from

uða; tÞ ¼ 0; uðb; 0Þ ¼ 0; t > 0: ð1:4Þ

and the initial condition

uðx; 0Þ ¼ fðxÞ; a 6 x 6 b: ð1:5Þ
where function fðxÞ will be chosen later. The numerical solu-
tion of the MRLW equation is investigated using the Fourier
Leap-Frog methods. The used method is validated by studying

the motion of a single solitary wave, development of interac-
tion of two positive solitary waves, development of three pos-
itive solitary waves interaction and a Maxwellian initial

condition pulse is then studied.

2. Analysis of the numerical scheme

A numerical method is developed for the periodic initial value
problem in which u is a prescribed function of x at t = 0 and
the solution is periodic in x outside a basic interval a 6 x 6 b.
Interval may be chosen large enough so the boundaries do not

affect the propagation of solitary waves. The Eq. (1.1) can be
written as

wt ¼ �ux � 6u2ux ð2:6Þ
where

w ¼ u� luxx ð2:7Þ
For ease of presentation the spatial period [a, b] is normalized
to [0, 2p] using the transformation x ! 2pðx� aÞ=L, where
L ¼ b� a. uðx; tÞ is transformed into Fourier space with

respect to x, and derivatives (or other operators) with respect
to x. This operation can be done with the Fast Fourier trans-
form (FFT). Applying the inverse Fourier transform
@nu
@xn

¼ F�1ðikÞnFðuÞ; n ¼ 1; 2; . . .. Then, we need to discretize

the results equations. For any integer N > 0 consider

xj ¼ jDx ¼ 2pj
N
; j ¼ 0; 1; . . . ;N� 1: The solution uðx; tÞ is trans-

formed into the discrete Fourier space as

ûðk; tÞ ¼ FðuÞ ¼ 1

N

XN�1

j¼0

uðxj; tÞe�ikxj ; �N

2
6 k 6 N

2
� 1 ð2:8Þ

And the inverse formula is

uðxj; tÞ ¼ F�1ðûÞ ¼
XN=2�1

k¼�N=2

ûðk; tÞeikxj ; 0 6 j 6 N� 1 ð2:9Þ

After all the previous mathematical operations to Eqs. (2.7)
and (2.6), and then reducing the resulting equation to the

equations

wðxj; tÞ ¼ uðxj; tÞ � lð2p=LÞ2F�1f�k2FðuÞg; ð2:10Þ

@wðxj; tÞ
@t

¼ �ð2p=LÞF�1fikFðuÞg
� 6ð2p=LÞ2u2ðxj; tÞF�1fikFðuÞg: ð2:11Þ

Letting u ¼ ½uðx0; tÞ; uðx1; tÞ; . . . ; uðxN�1; tÞ�T.
The ordinary differential equation (2.11) can be written in

the vector form

wt ¼ gðuÞ ð2:12Þ
where gðuÞ defines the right hand side of (2.11). The Leap Frog
method (two-step scheme) is given as

wt ¼ wðx; tþ DtÞ � wðx; t� DtÞ
2Dt

¼ wnþ1 � wn�1

2Dt
ð2:13Þ

is used to solve the resulting ordinary differential equation
(2.12) in time. Use the Leap-Frog scheme to advance in time

to obtain wðx; tþ DtÞ ¼ wðx; t� DtÞ þ 2Dtgðuðx; tÞÞ:
Finally, we find the approximate solution using the inverse

Fourier transform (2.9). The Leap-Frog needs two levels of ini-

tial value; we begin with uðx; 0Þ to get wðx; 0Þ from (2.10), then

wðx; nDtÞ ¼ F�1ðð1þ lk2ð2p=LÞ2ÞFðuðx; nDtÞÞ ð2:14Þ

wðx; 0Þ ¼ F�1ðð1þ lk2ð2p=LÞ2ÞFðuðx; 0ÞÞÞ: ð2:15Þ
Then evaluate the second level of initial solution wðx;DtÞ by

using a higher-order one-step method, for example, a fourth-
order Runge–Kutta method (RK4), then substitute wðx;DtÞ
in (2.14) as

uðx; nDtÞ ¼ F�1ðFðwðx;DtÞ=ð1þ lk2ð2p=LÞ2ÞÞÞ: ð2:16Þ
to obtain uðx; tÞ. Thus, Eq. (2.12) become

wðx;tþDtÞ¼wðx;t�DtÞ
�2Dtð1þ6ð2p=LÞu2ðx;tÞÞF�1fikFfuðx;tÞgg ð2:17Þ

By substituting wðx; 0Þ and uðx;DtÞ in (2.17) to evaluate
wðx; 2DtÞ then substitute wðx; 2DtÞ in (2.16) to evaluate
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