Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Tensile fracture characterization of adhesive joints by standard and optical techniques

^a Departamento de Engenharia Mecânica, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal

^b Instituto de Telecomunicações, Departamento de Engenharia Eletrotécnica e de Computadores, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

ARTICLE INFO

Article history: Received 4 December 2014 Accepted 6 February 2015 Available online 14 February 2015

Keywords: Aluminium alloys R-curves J-integral Fracture toughness Double-Cantilever Beam

ABSTRACT

The use of adhesive joints has increased in recent decades due to its competitive features compared with traditional methods. This work aims to estimate the tensile critical strain energy release rate (G_{IC}) of adhesive joints by the Double-Cantilever Beam (DCB) test. The *J*-integral is used since it enables obtaining the tensile Cohesive Zone Model (CZM) law. An optical measuring method was developed for assessing the crack tip opening (δ_n) and adherends rotation (θ_o). The proposed CZM laws were best approximated by a triangular shape for the brittle adhesive and a trapezoidal shape for the two ductile adhesives.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The developments in adhesives technology made possible the use of adhesive bonding in many fields of engineering, such as automotive and aeronautical, because of higher peel and shear strengths, and ductility. As a result, bonded joints are replacing fastening or riveting [1]. More uniform stress fields, capability of fluid sealing, high fatigue resistance and the possibility to join different materials are other advantages of this technology. However, stress concentrations exist in bonded joints along the bond length owing to the gradual transfer of load between adherends and also the adherends rotation in the presence of asymmetric loads [2]. A large amount of works addresses the critical factors affecting the integrity of adhesive joints, such as the parent structure thickness, adhesive thickness, bonding length and geometric modifications that reduce stress concentrations [3–5].

A large number of predictive techniques for bonded joints is currently available, ranging from analytical to numerical, using different criteria to infer the onset of material degradation, damage or even complete failure. Initially, stresses were estimated by analytical expressions as those of Volkersen [6], which had a lot of embedded simplifying assumptions, and the current stresses were compared with the allowable material strengths. Many improvements were then introduced, but these analyses usually suffered from the non-consideration of the material ductility. Fracture mechanics-based methods took the fracture toughness of materials as the leading parameter. These methods included more simple energetic or stress-intensity factor techniques that required the existence of an initial flaw in the materials [7,8]. More recent numerical techniques, such as CZM, combine stress criteria to account for damage initiation with energetic, e.g. fracture toughness, data to

* Corresponding author. Tel.: +351 939526892; fax: +351 228321159. *E-mail address:* raulcampilho@gmail.com (R.D.S.G. Campilho).

http://dx.doi.org/10.1016/j.engfracmech.2015.02.010 0013-7944/© 2015 Elsevier Ltd. All rights reserved.

Nomenclature	
\rightarrow	direction vector of the bottom curve
$\frac{v_{\text{bottom}}}{v_{\text{bottom}}}$	direction vector of the top curve
v_{top}	crack length
a_0	initial crack length
a _{ea}	equivalent crack length
arccos	inverse cosine function
В	width
С	compliance
C_0, C_1, C_2	$_{2}, C_{3}$ polynomial constants
Ci	experimentally measured initial compliance
d F	calibration length for the optical method
E E	found s modulus
L _f	shear modulus
G	critical strain energy release rate
G	tensile strain energy release rate
GIC	tensile critical strain energy release rate
G _{IIC}	shear critical strain energy release rate
h	adherend thickness
$L_{\rm T}$	total length of the specimen
$m_{\rm bottom}$	slope of the bottom curve
m_{top}	slope of the top curve
P	10ad
$p_i (1 = 1, D)$	2, 8) points for the optical method
г _и л	quadratic approximation function
ч R	correlation factor
t _A	adhesive thickness
t_{A}^{CT}	current <i>t</i> _A value at the crack tip
t_A^{i}	initial value of t_A
t _n	current tensile traction
t_n^0	cohesive strength in tension
t_s^0	cohesive strength in shear
U	strain energy
u v	x-coordinate displacement
V V. V. V.	y-coordinates of the points for the fitting procedure
V_1, V_2, V_3	<i>v</i> coordinates of the points for the fitting procedure
χ_1, χ_2, χ_3	$_{2}$ constants for the cubic equation of a_{eq}
$\beta_1, \beta_2, \beta_3$	fitting polynomial coefficients
Δ	crack length correction
δ	displacement
δ_n	crack tip opening
δ_{nc}	tensile end-opening at failure
Ef	tensile failure strain
θ_{o}	crack tip adherends rotation
$\theta_{\mathbf{p}}$	adherends rotation at the specimen's free ends
$\sigma_{\rm f}$	tensile vield stress
CBBM	Compliance-Based Beam Method
CBT	Corrected Beam Theory
CCD	Charge-Coupled Device
CCM	Compliance Calibration Method
CZM	Cohesive Zone Model
DCB	Double-Cantilever Beam
ENF	End-Notched Flexure
LEFM	Linear Elastic Fracture Mechanics
LVDI	Linear variable Differential Transducer

Download English Version:

https://daneshyari.com/en/article/770416

Download Persian Version:

https://daneshyari.com/article/770416

Daneshyari.com