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H I G H L I G H T S

• Fractional-order techniques applied to electrochemical energy storage are reviewed.

• Mathematical fundamentals of fractional-order calculus are elucidated.

• Available fractional-order battery/supercapacitor models are characterized.

• Case studies are performed to quantitatively analyze the efficacy of different models.

• A research outlook for the modeling methodology and applications has been discussed.
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A B S T R A C T

Electrochemical energy storage systems play an important role in diverse applications, such as electrified
transportation and integration of renewable energy with the electrical grid. To facilitate model-based man-
agement for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees
of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the
dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order
techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic
concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are
presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy.
Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types
are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order
models. These models offer 15–30% higher accuracy than their integer-order analogues, but have reasonable
complexity. Consequently, fractional-order models can be good candidates for the development of advanced
battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical
energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future
research directions, are highlighted.

1. Introduction

Transportation electrification and grid integration of renewable
energy sources constitute two renewed research efforts to reduce de-
pendence on fossil fuels and mitigate global warming [1]. Market pe-
netration of electrified vehicles (EVs) can help meet these goals if it is
coupled with decarbonized electricity, for example, solar and wind
power [2]. Electrochemical energy storage systems (EESSs) play a

critical role in both EVs and renewable energy integration applications.
They serve as energy sources to provide power supply and/or energy
buffers to improve efficiency and the overall economy.

Rechargeable batteries and supercapacitors are typical EESSs that
share a similar structure–both of them store and convert energy through
diffusion and migration of ions. Each battery or supercapacitor cell is
composed of positive and negative electrodes separated by an enabling
separator that allows ion transfer but prevents electron conduction.
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Electrodes and their separators are often immersed in an electrolyte
solution that contains mobile ionic species [3]. Among a number of
different energy storage technologies, lithium-ion (Li-ion) batteries
have currently been accepted as the leading candidate for commercial
EESSs because of their superiority, especially in volumetric and gravi-
metric energy densities [4,5]. However, each EESS has unique features
and characteristics, and may be well suited for particular applications.
For example, while lead-acid batteries are primarily used in cases where
cost, reliability, and abuse tolerance are crucial [6], supercapacitors are
preferred in devices that require high power density and long cycling
lifetime [7].

EESSs must be safe and highly tolerant of high/low temperatures.
They must also be cost-effective and provide large energy/power den-
sity and long cycle life. To pursue these objectives, model-based state
estimation/monitoring techniques and energy management schemes
have been extensively studied in the literature, e.g., [8,9]. A common
requirement of these tasks is to construct accurate yet simple mathe-
matical models that are adaptable to thermal and aging phenomena
inherent in EESSs.

Considerable research efforts have been dedicated to mathemati-
cally modeling EESS dynamics and have resulted in physics-based,
equivalent circuit, and data-driven models [10–12]. Based on differ-
entiation orders, these models can generally be assorted into integer-
and fractional-order models. Integer-order models dominate the re-
search and engineering application of electrochemical energy storage.
Hu et al. [13] compared commonly used equivalent circuit models of Li-
ion batteries in terms of accuracy, complexity, and robustness under
vehicle driving cycles. Doyle et al. [14] and Zou et al. [15] formulated
electrochemical models governed by a set of partial or ordinary dif-
ferential equations for Li-ion cells. Zhang et al. [16] and Drummond
et al. [17] discussed electrochemical models for supercapacitors.
However, it has been incrementally recognized, such as by Freeborn
et al. [18], that EESSs exhibit some mathematical characteristics in
accordance with fractional-order systems. This fact solicits increased
interest and endeavors to come up with novel EESS models in the do-
main of fractional calculus. As a result, the fractional-order modeling
methodology may not only improve prediction accuracy but also pre-
serve some physical meanings underlying model parameters.

This paper provides a comprehensive review of fractional-order
techniques for typical EESSs, including Li-ion batteries, lead-acid bat-
teries, and supercapacitors. Section 2 presents the mathematical fun-
damentals of fractional-order calculus. Section 3 introduces the
common dynamic processes of EESSs and electrochemical impedance
spectroscopy to elucidate the principles of fractional-order modeling.
Available battery/supercapacitor models are sequentially surveyed,
grouped, and characterized. After analyzing parameter identification
techniques in Section 4, the accuracy and computational requirement of
fractional-order models (FOMs) are quantitatively investigated via case
studies in Section 5. Section 6 highlights the main technical challenges
facing FOM-based management for EESSs, including modeling of cou-
pled system dynamics, state estimation, and charge/discharge control,
followed by concluding summaries in Section 7.

2. Mathematical fundamentals

This section exhibits the mathematical fundamentals of fractional-
order calculus (FOC) to facilitate the understanding of concepts and
technical tools used for modeling electrochemical energy systems. In
particular, the definitions of impedance and fractional-order derivatives
and the FOM's state-space representation will be discussed. A thorough
exposition of FOC can be found in textbooks on fractional-order system
modeling, analysis, and applications [19–21] and related survey articles
[22,23].

Frequency-domain electric impedance. In the frequency domain, a
general impedance, Z, in electrical circuits may be defined by the fol-
lowing proportional relation

∝ ∈ − ∈Z jω α ω( ) , for [ 1,1], ,α � (1)

where j is the imaginary number and ω is the radian frequency. The
conventional equivalent circuit elements, including pure capacitors,
resistors, and inductors, are special cases of Z, corresponding to =α 1,
0, and −1, respectively.

As initially proposed by Cole and Cole [24], a fractional-order ca-
pacitive element can be characterized by the impedance in (1) as

= ∈Z
C jω

α1
( )

, for (0,1),
α

αCPE
(2)

where the exponent α is a fractional-order and Cα is a constant and is
called a pseudo-capacitance with the dimension F⋅secα-1 [25]. ZCPE has
a constant-phase angle at απ/2 [26] and is often called a constant phase
element (CPE). In comparison, the phase shift for pure capacitors is π/2.

Fractional-order derivatives. The fractional-order operator for the CPE
in (2) is mathematically defined by ⋅ = ⋅d dt( ) ( )/t

α α α
0D . An equation

with t
α

0D describes dynamic processes with infinite dimension. To fa-
cilitate analysis and numerical implementation, three different defini-
tions, namely, Riemann-Liouville (RL), Caputo, and Grünwald-Letnikov
(GL) fractional derivatives are often utilized for such an operator [19].
For instance, the GL fractional derivative takes explicitly the form
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where T is the sampling time interval, t T/ is the maximum integer
lower than t T/ , and α k, represents the Newton binomial term defined
as
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where Γ() is the gamma function with the definition of
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For simplicity, f t( )t
α

0D is written as f t( )αD in the sequel. A com-
prehensive description of these definitions as well as their peculiarities
has been presented in Refs. [19,27].

Unlike their integer alternatives, fractional derivatives are not local
operators because they take into account the entire past trajectory of

⋅f ( ) over the interval t[0, ], as seen in (3). This is the so-called long
memory property of fractional derivatives. However, this property sig-
nificantly increases the computational burden for engineering applica-
tions of FOMs, particularly for real-time model-based optimization and
control. To improve implementation efficiency, a short memory prin-
ciple was therefore proposed by Podlubny [28] to approximate (3) with
high-order difference equations, which consider only recently past in-
formation in the state propagation. This approach has been shown to be
effective in a number of examples in fractional-order modeling of Li-ion
batteries [29] and supercapacitors [30]. Indeed, there is in general a
trade-off between modeling accuracy and computational complexity
around the memory length.

System representation and types. The state-space representation of a
general fractional-order system can be written in the following form

=x t f t x t u t( ) ( , ( ), ( )),αD (6a)

=y t h t x t u t( ) ( , ( ), ( )), (6b)

where = ⋯x x x: [ , , ]n1 is the state vector, = ⋯x x x: [ , , ]α α α
n1 n1D D D , and

u y, are separately the system input and output vectors. This re-
presentation is the same as integer-order system representations except
for the fractional derivative on the left-hand side of (6a). If ⋯α α, , n1 are
all positive integer multiples of a real number γ, then (6) is a com-
mensurate fractional-order system of order γ; otherwise, it is said to be
incommensurate, with more degrees of freedom to fit system dynamics
[19,31,32].
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