Short communication

Solvent-free synthesis of inorganic-organic hybrid solids with chainlike, layered, and open-framework structures

Jing Li, Ting Li, Hongmei Zeng, Guohong Zou*, Zhien Lin*
College of Chemistry, Sichuan University, Chengdu 610064, PR China

GRAPHICALABSTRACT

An open-framework indium phosphite-oxalate with multidirectional 12-ring channels was prepared under solvent-free conditions. The hybrid framework is intriguing since it may serve a structural model to illustrate that the wall of a dia-type framework can be thickened by using larger inorganic building blocks.

ARTICLE INFO

Keywords:
Solvent-free synthesis
Metal phosphite-oxalate Open framework
Second harmonic generation Magnetism

Abstract

Three inorganic-organic hybrid solids, namely, $\mathrm{Cd}_{2}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(\mathbf{1})$, $\left(\mathrm{H}_{2} \mathrm{dab}\right)_{0.5} \cdot \mathrm{Co}^{2}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)$ $\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(2)$, and $\mathrm{Hdbu} \cdot \mathrm{In}_{2}\left(\mathrm{HPO}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{1.5}$ (3), were prepared under solvent-free conditions, where phen $=1,10$ phenanthroline, $\mathrm{dab}=1,4$-diaminobutane, and $\mathrm{dbu}=1,8$-diazabicyclo[5.4.0]undec-7-ene. These compounds have chainlike, layered, and three-dimensional structures, respectively. Compound 1 shows a weak second harmonic generation response. The temperature dependence of the magnetic susceptibility of compound 2 was also investigated.

Open-framework metal phosphites are an important class of solid state materials that have diverse structures and many appealing properties such as luminescence, magnetism, and gas adsorption [1-3]. Different from zeolite molecular sieves with 4 -connected nets, metal phosphites often possess interrupted frameworks [4-8]. Illustrative compounds include the chiral zinc phosphite $\mathrm{Na}_{4}\left[\mathrm{Zn}_{3}\left(\mathrm{HPO}_{3}\right)_{5}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with 20 -membered ring (20 MR) channels, the low-density beryllium
phosphite SCU-24 with 24 MR channels, and the bimetallic phosphites NTHU-13 with tunable pore apertures [9-11]. During the past two decades, a great deal attention has been paid to the structure-directing role of amines and the coordination geometries of metal ions. Much less work has been carried out to incorporate organic ligands into metal phosphite frameworks [12-15].

Microporous and open-framework materials are usually prepared

[^0]under hydrothermal and solvothermal conditions. The replacement of water or molecular organic solvents by ionic liquids has resulted in the formation of a large number of new open-framework materials [16-19]. Recently, solvent-free method has attracted considerable attention because it offers new opportunities for the synthesis of crystalline materials by removing the effect of solvent on the framework structure [20-25]. In our previous studies, two open-framework metal phosphiteoxalates with diamondoid and pillared-layered structures were prepared by a solvent-free approach using guanidinium carbonate as the structure-directing agent [26]. Along this line of research, here we report the solvent-free synthesis of three inorganic-organic hybrid solids, namely, Cd_{2} (phen) $)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ (1), $\left(\mathrm{H}_{2} \mathrm{dab}\right)_{0.5} \cdot \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)$ $\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ (2), and $\mathrm{Hdbu} \cdot \mathrm{In}_{2}\left(\mathrm{HPO}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{1.5}$ (3), where phen $=1,10-$ phenanthroline, dab = 1,4-diaminobutane, and dbu = 1,8-diazabicyclo [5.4.0]undec-7-ene. These compounds have chainlike, layered, and three-dimensional structures, respectively [27]. The successful synthesis of compound 1 provides a rare example that three different types of anions (i.e., phosphate, phosphite, and oxalate) can coexist in the same structure. This compound crystallizes in a chiral space group and shows a weak second harmonic generation response. Topological analyses reveal that compounds 2 and 3 have hcb and dia nets, respectively.

Yellow crystals of compound 1 were obtained by heating a mixture of $\mathrm{Cd}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and 1,10-phenanthroline at $150{ }^{\circ} \mathrm{C}$ for 8 days. This compound crystallizes in the triclinic space group $P 1$ (No. 1). The asymmetric unit contains two cadmium atoms, one $\mathrm{H}_{2} \mathrm{PO}_{4}$ unit, one $\mathrm{H}_{2} \mathrm{PO}_{3}$ unit, one oxalate ligand, and two phen molecules. The presence of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$unit in the structure indicates that the phosphorous acid can be oxidized or disproportionated into $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$anion under the solvent-free conditions. This phenomenon was also observed in the syntheses of several zinc phosphate-phosphites [28, 29]. The linkages between cadmium atoms, $\mathrm{H}_{2} \mathrm{PO}_{4}$ unit, and $\mathrm{H}_{2} \mathrm{PO}_{3}$ unit gave rise to linear $\mathrm{Cd}_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)$ tetramers, which are further bridged by oxalate ligands to produce inorganic-organic hybrid chains running along the [100] direction (Fig. 1). Phen molecules attach to the chains through $\mathrm{Cd}-\mathrm{N}$ bonds to complete the octahedral coordination of cadmium atoms. The hybrid structure of compound 1 is reminiscent of the manganese phosphate-oxalate Mn (phen) $\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{0.5}$, which has a similar chainlike structure containing $\mathrm{Mn}_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ tetramers. It is worth noting that the manganese phosphate-oxalate crystallizes in the centrosymmetric space group $P-1$, while compound 1 crystallizes in the chiral space group $P 1$. We believe that the presence of both $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ and $\mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$units in the structure of 1 is helpful for the symmetry breaking.

Red crystals of compound 2 were obtained by heating a mixture of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and 1,4-diaminobutane at $150{ }^{\circ} \mathrm{C}$ for 6 days. This compound crystallizes in the triclinic space group P-1 (No. 2). There are one cobalt atom, one $\mathrm{H}_{2} \mathrm{PO}_{3}$ unit, two halves of oxalate ligands, and one half of an $\mathrm{H}_{2} \mathrm{dab}$ cation in the asymmetric unit. The linkages between cobalt atoms and $\mathrm{H}_{2} \mathrm{PO}_{3}$ units

Fig. 2. View of the layered structure of compound 2 with honeycomb-like windows.
give rise to cyclic $\mathrm{Co}_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{2}$ tetramers, which are further bridged by oxalate ligands to produce honeycomb-like layers with 12 MR windows (Fig. 2). Each 12 MR window has a pore size of $7.5 \times 7.8 \AA^{2}$ and hosts one H_{2} dab cation within its free void. By regarding cobalt atoms as 3connected nodes, the layered structure can be represented as an hcb net with a point symbol of 6^{3}.

Colorless crystals of compound 3 were obtained by heating a mixture of $\mathrm{In}_{2} \mathrm{O}_{3}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and 1,8-diazabicyclo[5.4.0] undec7 -ene at $150{ }^{\circ} \mathrm{C}$ for 5 days. This compound crystallizes in the triclinic space group P-1 (No. 2). The asymmetric unit contains two crystallographically independent indium atoms and two crystallographically independent phosphorus atoms. Each indium atom is surrounded by six oxygen atoms with the $\operatorname{In}-\mathrm{O}$ bond length in the region 2.067(5)-2.248(4) Å. Each phosphorus atom makes three P-O-In linkages to adjacent indium atoms, with the fourth vertex occupied by a hydrogen atom. The strict alternation of InO_{6} octahedra and HPO_{3} pseudo pyramids produces double-chain building blocks running along the [100] direction. The indium phosphite double-chains are bridged by oxalate ligands along the [010] direction to form double-layers. Such a double-layer can be understood as the assembly of two hcb-type layers. Then, the double-layers are further pillared by oxalate ligands along the

Fig. 1. (a) The linear $\mathrm{Cd}_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)$ tetramer. (b) The chainlike structure of compound 1.

https://daneshyari.com/en/article/7748304

Download Persian Version:
https://daneshyari.com/article/7748304

Daneshyari.com

[^0]: * Corresponding authors.

 E-mail addresses: zough@scu.edu.cn (G. Zou), zhienlin@scu.edu.cn (Z. Lin).
 https://doi.org/10.1016/j.inoche.2018.06.022
 Received 20 May 2018; Received in revised form 26 June 2018; Accepted 27 June 2018 Available online 30 June 2018
 1387-7003/ © 2018 Elsevier B.V. All rights reserved.

