Inorganica Chimica Acta 473 (2018) 9-14

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Synthesis, characterisation and protonation of phosphate disubstituted derivatives with pyridyl-functionalized diiron

Na Wen^a, Jing Cao^a, Yu-Ying Zheng^{a,*}, Jian-Di Lin^b, Shao-Wu Du^c

^a College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, PR China

^b Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China

^c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China

ARTICLE INFO

Article history: Received 8 May 2017 Received in revised form 13 November 2017 Accepted 15 November 2017 Available online 16 November 2017

Keywords: [FeFe] hydrogenase Phosphine-substitute Crystal structure Protonation

ABSTRACT

Three new phosphine disubstituted derivatives of [2Fe2S] model complexes with pendant pyridine family, $[(\mu-SEt)(\mu-SCH_2C_6H_4N)Fe_2(CO)_4(L)_2]$ (2, L = PPh₃; **3**, L = dppm; **4**, L = PMe₃), have been synthesized and the molecular structure of **2** was determinated by single crystal X-ray diffraction analysis. They were all characterized by MS, FT-IR, ³¹P and ¹H NMR spectra and their electrochemical behaviors were also conducted. The protonation of complex **4** with HBF₄·Et₂O was also investigated by FT-IR, ³¹P and ¹H NMR spectroscopies at variable temperature, which reveals the formations of both bridging and terminal hydride intermediates.

© 2017 Published by Elsevier B.V.

1. Introduction

The biohydrogenation enzyme exists widely in nature, because of the reversible reduction of protons to molecular hydrogen at high efficiency [1-6], especially [FeFe]-hydrogenases, which is the most important hydrogenases, can reversibly catalyze the reduction of proton to hydrogen with an extremely high efficiency (Chart 1a) [7–8]. Until now, much work has been focused on the synthesis, characterization and functional biomimics for the activity of sub-clusters {[4Fe4S] and [2Fe2S]} in [FeFe]-hydrogenases, such as the study for the combination of proton and generated hydrogen under electrochemical conditions [9-15]. To better understand the chemical properties of the active site in Fe-only model complexes for the production of enzymatic H₂, various good donor ligands especially phosphine ligands, have been widely used to substitute the carbonyl groups in many all-CO parent complexes of dirron hydrogenases in order to study the structure, electrochemistry and protonation properties of the as-formed substituted derivatives (Chart 1b, c). In addition, some model complexes featuring hemi-labile pendant N, S and O ligands have been synthesized [16], in which the pendant ligands are coordinated to Fe atoms at the apical position. On the other hand, a dynamic ligation of propylamine was observed in a diiron model complex $[(\mu-pdt)]$ $Fe_2(CO)_5(H_2NPr)$ in CH₃CN solution [17], which might have some relevance to the substrate and inhibitor binding at the [FeFe]hydrogenase active site. In the meantime, although there is a broad consensus that an iron-bound bridging and terminal hydride species occur in the catalytic mechanism, such a species has rarely been directly observed experimentally (Chart 1d) [18-20]. Herein, we would like to describe the syntheses and structural characterization of three new diiron phosphine-substituted complexes with pendant heterocyclic arms. Complex 1 mentioned at this work refers to $[(\mu-SEt)(\mu-SCH_2C_6H_4N)Fe_2(CO)_5]$ [21], in which the pendant pyridine ring is loosely coordinated to the iron atom. In the presence of CO or phosphine ligands, complex 1 is readily converted to its corresponding hexacarbonyl complexes or corresponding phosphine-disubstituted derivatives. In this work, three phosphine-disubstituted derivatives of $[(\mu-SEt)(\mu-SCH_2C_6H_4N)]$ Fe₂(CO)₅] were isolated via the chromatography technique, namely, $[(\mu-SEt)(\mu-SCH_2C_6H_4N)Fe_2(CO)_4(L)_2]$ (2, L = PPh₃; 3, L = dppm; **4**, L = PMe₃). The experiment of complex **4** protonated by HBF₄·Et₂O which is characterized by FT-IR, ³¹P and ¹H NMR spectra at variable temperature was also discussed.

2. Experimental

2.1. General procedures and materials

Unless otherwise indicated, all reactions and operations were performed under an atmosphere of dry, oxygen-free inert

Research paper

^{*} Corresponding author.

E-mail addresses: wennaa@fzu.edu.cn (N. Wen), yyzheng@fzu.edu.cn (Y.-Y. Zheng).

Chart 1. (a) An active center of [FeFe]-hydrogenase as determined experimentally from *D. desulfuricans.* (b) Simple all-CO model complexes of the active site (H-cluster, X = NH, CH₂ or O) of the hydrogen producing enzyme. (c) Model complexes with pendant ligands. (d) the H_{red} (L = H⁺ (Fe^IFe^I) or H⁻ (Fe^{II}Fe^{II}) and H_{ox} = vacant or H₂O (Fe^{II}Fe^{II}) states of the [FeFe]-hydrogenase active site.

atmosphere using standard schlenk-line techniques. Solvents were distilled from appropriate drying agents prior to use. Other chemicals in reagent grade were used without further purification. Complex **1** was prepared according to our previous literature. Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-IR Spectrometer. Mass spectra were obtained on a DECAX-30000 LCQ Deca XP ion trap mass spectrometry. Elemental analyses were carried out with an Elementar Vario Micro Elemental Analyzer. ¹H and ³¹P NMR spectra were collected on a Bruker Biospin Avance III 400 NMR spectrometer.

2.2. Single crystal X-ray structural determination

X-ray diffraction data were collected on a Rigaku diffractometer with a Mercury CCD area detector (Mo $K\alpha$; $\lambda = 0.71073$ Å). Empirical absorption correction was applied to the data using the *CrystalClear* program [22]. The structure was solved by direct method using SHELXS-97 [23] and refined by full-matrix least-squares on F^2 using the SHELXL-2016 programme [24]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were all treated by geometrical positions.

2.3. Electrochemistry

Electrochemistry test was carried out under an argon atmosphere on a CHI600D electrochemical potentiostat. A solution of 0.1 M n-Bu₄NPF₆ (Aldrich, spectroscopy grade) in CH₃CN was used as the electrolyte. The electrolyte solution was degassed by bubbling with dry argon for 10 min before measurement. Cyclic voltammetry experiments were carried out in a three-electrode cell configuration consisting of a glassy carbon disc (diameter 2 mm) which is successively polished with 3- and 1- μ m diamond pastes and sonicated in ion-free water for 10 min, a platinum counter electrode and a Ag/AgCl reference electrode. The energy level of the Ag/AgCl reference electrode was calibrated against by ferrocence/ferrocenium (Fc/Fc⁺) redox system (just as the internal standard).

2.4. Syntheses of $[(\mu$ -SEt)(μ -SCH₂C₆H₄N)Fe₂(CO)₄(L)₂] (2, L = PPh₃; 3, L = dppm; 4, L = PMe₃)

Complex **2** was prepared *via* the reaction of **1** and PPh₃. In detail, a mixture of **1** (0.03 g, 0.05 mmol) and PPh₃ (0.025 g, 0.20

mmol) was stirred in toluene (20 mL) at room temperature under N₂ for 3 h, and then the solvent was removed under reduced pressure, and the residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (4:1 v/v) as eluent. Finally, complex **2** was obtained as a red solid (22 mg, 40%). Complexes **3** (14 mg, 33%) and **4** (8 mg, 26%) were synthesized in a way similar to that described for **2**, except that dppm and PMe₃ were employed instead of PPh₃, respectively.

2.5. Analytical data for complexes 2-4

For **2:** Anal.Calcd for $C_{48}H_{41}Fe_2NO_4P_2S_2$ (933.62): C 61.70, H 4.39, N 1.50; Found: C 61.30, H 4.01, N 1.31. MS (ESI): m/z 955.5 [M + Na]⁺. IR (CH₂Cl₂, cm⁻¹): 1991 (s), 1950 (m), 1931 (w). ¹H NMR (CDCl₃): δ 7.39–7.19 (m, 34H, C₆H₅ and C₅H₄), δ 3.14 (m, 2H, CH₂), 1.98 (s, 2H, CH₂), 1.12 (m, 3H, CH₃) ppm. ³¹P NMR (CDCl₃): δ 49.90 (s) ppm.

For **3**: Anal. Calcd for $C_{62}H_{55}Fe_2NO_4P_4S_2$ (1176.70): C 63.23; H 4.67; N 1.19; Found: C 63.14; H 4.51; N 1.07. MS (ESI): *m/z* 1177.1 [M]. IR (CH₂Cl₂, cm⁻¹): v_{CO} 1990 (s), 1946 (m), 1928 (m). ¹H NMR (CDCl₃): δ 7.43–7.09 (m, 44H, C_6H_5 and C_5H_4), 3.16 (m, 2H, CH₂), 2.74 (s, 4H, CH₂), 1.75 (m, 2H, CH₂), 1.19 (m, 3H, CH₃) ppm. ³¹P NMR (CDCl₃): δ 44.70 ppm (d, *J* = 130.8 Hz), -25.72 (d, *J* = 140.4 Hz) ppm.

For **4**: Anal. Calcd for $C_{18}H_{29}Fe_2NO_4P_2S_2$ (561.0): C 38.50, H 5.17, N 2.50. Found: C 38.34, H 5.21, N 2.30. MS (ESI): m/z 562.5 [M + H]⁺. IR (CH₂Cl₂, cm⁻¹): v_{CO} 1979 (s), 1938 (m), 1910 (s). ¹H NMR (CDCl₃): δ 7.55–6.99 (m, 4H, C₅H₄), 3.47 (m, 2H, CH₂), 2.17 (m, 2H, CH₂), 1.38 (m, 18H, CH₃), 1.18(m, 3H, CH₃) ppm. ³¹P NMR (CDCl₃): δ = 8.19 (s) ppm.

3. Results and discussion

3.1. Synthesis and characterization of compounds 2–4

Treatments of 1 with excess PPh₃ or dppm in toluene at room temperature afford the disubstituted complexes [(µ-SEt)(µ- $SCH_2C_6H_4NFe_2(CO)_4(L)_2$ (2, L = PPh₃; 3, L = dppm; 4, L = PMe₃) (Scheme 1). The substitution of 1 with phosphine ligands in MeCN with the aid of Me₃NO, resulted in a higher yields. This correlates well the fact that in complex 1 the pendant pyridine ring is loosely coordinated to the iron atom. Complexes 2-4 all display three absorption bands in the carbonyl region from 1910 to 1991 cm⁻¹. The \ddot{y}_{CO} bands shift to a much lower energy compared with those of the parent complex (1925–2072 cm⁻¹). This correlates well with the fact that the phosphine-disubstituted complex may have a much more significant increase in electron density of the diiron center [25–29]. The average value of the Δv (CO) bands of **4** shifts *ca.* 92 cm^{-1} to lower frequency compared with that of the all-CO parent complex (Table 1). The average values of the three v_{CO} bands for the PMe₃-disubstituted complex **4** (1951 cm^{-1}) is, as expected, larger than those for the PPh₃ and dppm-disubstituted homologues $\mathbf{2}$ and $\mathbf{3}$ (1957 and 1954 cm⁻¹), which results from the good electron donating capability of PMe₃ ligand.

Scheme 1. Synthesis of complexes **2–4**. (i) LiBEt₃H, THF, -78 °C; (ii) 2-(chlor-omethyl)pyridine hydrobromide, Et₃N.

Download English Version:

https://daneshyari.com/en/article/7750634

Download Persian Version:

https://daneshyari.com/article/7750634

Daneshyari.com