Bioorganic & Medicinal Chemistry Letters 28 (2018) 572-576

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis of novel multivalent fluorescent inhibitors with high affinity to prostate cancer and their biological evaluation

Young-Do Kwon^{a,b}, Hea-Jong Chung^c, Sun Joo Lee^d, Sun-Hwa Lee^d, Byung-Hoon Jeong^e, Hee-Kwon Kim^{b,f,*}

^a Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

^b Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea

^c Department of Microbiology, Seonam University Medical School, Namwon, Jeonbuk 55724, Republic of Korea

^d New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea

^e Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 54531, Republic of Korea

^fResearch Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Republic of Korea

ARTICLE INFO

Article history: Received 27 November 2017 Revised 17 January 2018 Accepted 23 January 2018 Available online 31 January 2018

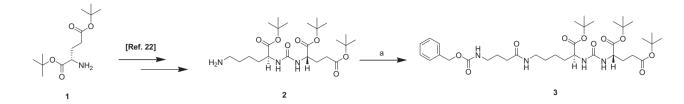
Keywords: Prostate cancer Prostate-specific membrane antigen Near-infrared fluorophore Biomedical imaging Glutamate-urea-lysine

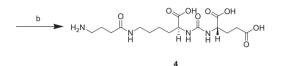
ABSTRACT

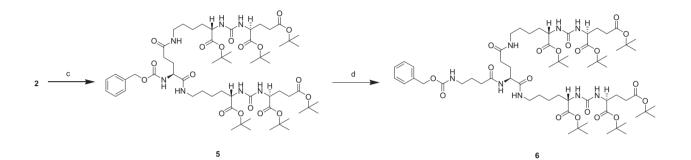
Prostate-specific membrane antigen (PSMA) is an important biological target for therapy and diagnosis of prostate cancer. In this study, novel multivalent PSMA inhibitors with glutamate-urea-lysine structures were designed to improve inhibition characteristics. Precursors of the novel inhibitors were prepared from glutamic acid with di-*tert*-butyl ester. A near-infrared molecular dye, sulfo-Cy5.5, was introduced into the precursors to generate the final PSMA fluorescent inhibitors, compounds **12–14**, to visualize prostate cancer. Biological behaviors of the inhibitors were evaluated using *in vitro* inhibition assays, *in vivo* fluorescent imaging, and *ex vivo* biodistribution assays. *K*_i values from inhibition studies indicated that dimeric inhibitor **12**. According to other biological studies using a mouse model of prostate cancer, dimeric inhibitor compounds **13** and **14** had higher tumor accumulation than the monomer. However, glutamine-based dimeric inhibitor **13**, which had a benzene structure. Thus, these studies suggest that glutamine-based dimeric inhibitor **13** can be a promising optical inhibitor of prostate cancer.

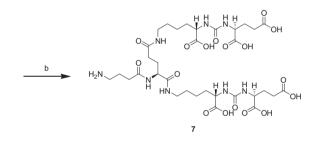
© 2018 Elsevier Ltd. All rights reserved.

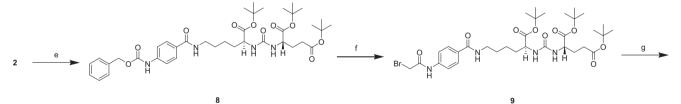
Prostate cancer is one of the most common cancers in men and the third leading cause of cancer-related deaths in American men.¹ Many patients with prostate cancer are treated with radical prostatectomy which has the drawback of positive surgical margins (PSM), meaning incomplete cancer resection.² Avoiding PSM is taxing for surgeons because of difficulty identifying local invasion by prostate cancer during surgery.³ Therefore, a technical means of visualizing tumor invasion would help surgeons improve prostatectomy outcomes. An optical imaging agent with a fluorescent moiety emitting light in wavelengths in the near-infrared (NIR) region between 650 and 900 nm would be ideal because NIR light efficiently penetrates biological tissues, which emit low autofluorescence in this wavelength range.⁴

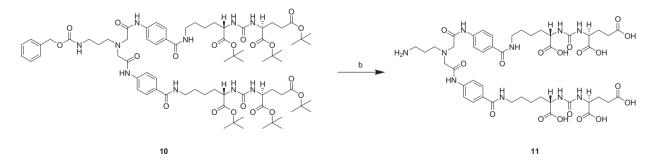

Prostate-specific membrane antigen (PSMA), known as glutamate carboxypeptidase II, is a type II membrane glycoprotein.⁵


E-mail address: hkkim717@jbnu.ac.kr (H.-K. Kim).


PSMA is a zinc metalloenzyme catalyzing the hydrolysis of *N*-acetylaspartylglutamate to glutamate and *N*-acetylaspartate.⁶ Since it is distinctly overexpressed in most prostate cancers including metastatic tumors,^{5–7} PSMA is an attractive biological target for imaging prostate cancer.^{5–9} Although a variety of imaging tracers with antibodies targeting PSMA have been developed and demonstrated positive results,^{10–12} these agents have drawbacks for image-guided surgery such as slow clearance from non-target sites, which delays target recognition.¹³ Thus, many PSMA-targeting small molecular agents have been developed.^{13–24} Among them, many promising inhibitors that target PSMA have a key moiety, a glutamate-urea-lysine (GUL) structure.^{15,18–24}


Cancer-targeting fluorescence imaging systems are considered useful tools for cancer diagnosis and image-guided surgery, so several research groups have focused on the development of effective fluorescent PSMA probes with the GUL structure for targeting prostate cancer.^{19,20,23} The groups have widely investigated for linker effects between a fluorescent dye and the GUL structure and the dye's effects, but not for multimerization of the GUL, which can be an attractive approach for increasing binding affinity and


^{*} Corresponding author at: Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea.



Scheme 1. The synthesis of inhibitor precursors. Reagents and conditions: (a) 4-(benzyloxycarbonylamino)butanoic acid, hydroxybenzotriazole (HOBt), 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride (EDC), triethylamine (Et₃N), dichloromethane, r.t., 9 h; (b) 1. H₂ gas, 10% Pd/C, methanol, r.t., 12 h, 2. Trifluoroacetic acid, dichloromethane, r.t., 20 or 22 h; (c) (S)-2-(benzyloxycarbonylamino)pentanedioic acid, HOBt, EDC, Et₃N, *N*,*N*-dimethylformamide (DMF), r.t., 14 h; (d) 1. H₂ gas, 10% Pd/C, methanol, r.t., 16 h, 2. 4-(benzyloxycarbonylamino)butanoic acid, HOBt, EDC, Et₃N, dichloromethane, r.t., 12 h; (e) 4-(benzyloxycarbonylamino)benzoic acid, HOBt, EDC, Et₃N, *N*,*N*-dimethylformamide (DMF), r.t., 14 h; (d) 1. H₂ gas, 10% Pd/C, methanol, r.t., 15 h; (f) 1. H₂ gas, 10% Pd/C, methanol, r.t., 15 h, 2. bromoacetyl bromide, *N*,*N*-diisopropylethylamine (DIPEA), dichloromethane, r.t., 3 h; and (g) benzyl 3-aminopropylcarbamate, DIPEA, acetonitrile, 75 °C, 24 h.

Download English Version:

https://daneshyari.com/en/article/7779525

Download Persian Version:

https://daneshyari.com/article/7779525

Daneshyari.com