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a b s t r a c t

First and second order least squares methods are used in generating simple approximation polynomials for the
state term of the model for regenerative chatter in the milling process. The least squares approximation of
delayed state term and periodic term of the model does not go beyond first order. The resulting discrete maps
are demonstrated to have same convergence rate as the discrete maps in other works that are based on the
interpolation theory. The presented discrete maps are illustrated to be beneficial in terms of computational
time (CT) savings that derive from reduction in the number of calculation needed for generation system
monodromy matrix. This benefit is so much that computational time of second order least squares-based
discrete map is noticeably shorter than that of first order interpolation-based discrete map. It is expected from
analysis then verified numerically that savings in CT due to use of least squares theory relative to use of
interpolation theory of same order rises with rise in order of approximation. The experimentally determined
model parameters used for numerical calculations are extracted from literature.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Chatter is the self-excited vibration of tool-workpiece interaction
in machine tools. Some of the known popular causes of chatter are
regenerative effects [1,2,3,4], mode coupling effects [5,6], frictional
effects [7] and thermo-mechanical effects [8]. Regenerative effects
which were first suggested as a potential cause of chatter by Arnold
[9] is now considered the most common cause of chatter. Regen-
erative effects are the perturbation-induced waviness on a machined
surface. Random nature of perturbations causes two consecutive tool
passes to be out of phase resulting in cutting force variation that
excites the tool. The resulting chatter grows if cutting parameter
combination is unstable but remains bounded if the cutting para-
meter combination is stable. For this reason, most analysis on
regenerative chatter is geared towards determining the stability lobe
that separates stable cutting domain from the unstable domain.
A method that achieves this demarcation by utilizing the mean of the
Fourier series of the dynamic milling coefficients called the Zeroth
Order Approximation (ZOA) method was proposed by Altintas and
Budak [1] and upgraded for use in three dimensional chatter stability
analysis by Altintas [10]. Even though the ZOA method is fast it lacks
the capacity to accurately predict stability at low radial immersions
[11,12]. The other methods that follow ZOA are strongly based on the
Floquet theory. They seek a linear operator called Floquet transition
matrix that transforms the whole delayed state to the whole present
state. Stability lobe is then computed from eigen-value analysis of the

resulting Floquet transition matrix. These methods have the capacity
lacking in the ZOA method in that they can predict stability in both
high and low-radial immersions. Temporal Finite element analysis
(TFEA) is one of these methods that originally seemed to have a
shortcoming opposite to that of the ZOA method in that it (TFEA)
failed to predict accurate stability at high-radial immersion and cuts
involving simultaneous tooth engagement [13]. Increasing the size of
Floquet transition matrix of TFEA by simply increasing the number of
elements of discrete delay was seen to solve the problem [14,15]. The
semi-discretization method was introduced by Insperger and Stepan
[16] for analysis of delayed systems. Some of the other works
utilizing the semi-discretization method in milling chatter stability
analysis are [17,18,19,20]. So far the semi-discretization method has
not been proven to have any major problem in milling chatter
stability analysis except that the recently developed method called
the full-discretization method [21,22,23] proved to save more
computational time. Interpolation polynomials are introduced in
the integration scheme of the full-discretization and solved to
produce a discrete map used for stability analysis in the works
[21,22,23]. In the present study, least squares approximation theory
is used instead of interpolation theory. It is seen that the presented
use of least squares approximation is very promising in terms of
further computational time savings.

2. General least squares method

The least squares method approximates a set of known
responses xi with a function xðzÞ by minimizing the sum of squares
of Euclidian error norms ‖xðziÞ�xi‖. The n response vectors xi are
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located at positions zi in a real d-dimensional space of indepen-
dent variables. Symbolically ziϵR

d where iϵ 1; 2;…::n½ �. The approx-
imation function xðzÞ is usually a polynomial of form

xðzÞ ¼ aðzÞ½ �Tb ð1Þ
where the polynomial of basis vector aðzÞ ¼ a1ðzÞ a2ðzÞ⋯⋯alðzÞ

� �T
contains the independent variables and the vector of coefficients
b¼ b1 b2……bl

� �T contains the coefficients of approximation
function x zð Þ. For illustration the linear scalar bivariate approx-
imation function has dimension d¼ 2 and order p¼ 1 such that

xðzÞ ¼ xðz1; z2Þ ¼ b1þb2z1þb3z2

xðzÞ ¼ xðz1; z2Þ ¼ 1 z1 z2
� � b1

b2
b3

8>><
>>:

9>>=
>>;

from which it is seen that aðzÞ ¼ 1 z1 z2
� �T and

b¼ b1 b2 b3
� �T and length l¼ 3. The length of aðxÞ or b is

generally given as l¼ ðdþpÞ!
d!p! . The least squares method boils down

to minimizing the error functional

EðbÞ ¼ ∑
n

i ¼ 1
‖xðziÞ�xi‖2 ð2Þ

Approximation function xðziÞ ¼ aðziÞ½ �Tb at the known locations are
inserted in Eq. (2) to give

EðbÞ ¼ ∑
n

i ¼ 1
‖ aðziÞ½ �Tb�xi‖2 ð3Þ

The coefficient vector b at which EðbÞ is minimized is determined
by differentiating with respect to b and equated to zero to give

∂
∂b

EðbÞ ¼ ∑
n

i ¼ 1
2aðziÞ aðziÞ½ �Tb�xi

n o
¼ 0 ð4Þ

Eq. (4) is expanded to give

∑
n

i ¼ 1
aðziÞ aðziÞ½ �Tb� ∑

n

i ¼ 1
aðziÞxi ¼ 0 ð5Þ

The minimum-error coefficient vector b is obtained through
matrix inversion process

b¼ ∑
n

i ¼ 1
aðziÞ aðziÞ½ �T

( )�1

∑
n

i ¼ 1
aðziÞxi ð6Þ

Eq. (6) is inserted in Eq. (1) to give the approximation polynomial
as

xðzÞ ¼ aðzÞ½ �T ∑
n

i ¼ 1
aðziÞ aðziÞ½ �T

( )�1

∑
n

i ¼ 1
aðziÞxi ð7Þ

Some more fundamental about least squares method can be
gained from the works [24,25,26]. In making use of Eq. (7), the
summation sign is considered a multiplying factor to each of the
elements of the matrix aðziÞ aðziÞ½ �T and vector aðziÞxi. Eq. (7) can be
verified by looking back at the earlier mentioned illustrative linear
scalar bivariate approximation function. It will be seen that taking
the partial derivatives of the error functional with respect to the
coefficients b1, b2 and b3 gives a linear system of equation that
could be re-arranged to give same result as that of the direct use
eq. (7).

3. Least squares application in milling discrete mapping

The full-discretization method [21] requires that state space
equation governing regenerative milling process with single

discrete delay is put in the form

ξ
:

ðtÞ ¼AξðtÞþBðtÞξðtÞ�BðtÞξðt�τÞ ð8Þ

where A¼
0 1

�ω2
n �2ξωn

" #
is a constant matrix that that con-

tains the time-invariant parameters of the system and

BðtÞ ¼
0 0

�whðtÞ
m 0

" #
is a coefficient matrix that captures the

periodicity of cutting force of the unperturbed milling process.
Periodicity of BðtÞ stems from periodicity of the specific force
variation hðtÞ given as

hðtÞ ¼ γðvτÞγ�1C tan ∑
N

j ¼ 1
gjðtÞsinγθjðtÞ χsinθjðtÞþcosθjðtÞ

� � ð9Þ

The non-linear tangential and normal cutting force models used in
deriving eq. (8) are of the forms [28]

F tan ;jðtÞ ¼ C tanw f a sin θjðtÞ
� �γ

Fnorm;jðtÞ ¼ Cnormw f a sin θjðtÞ
� �γ ¼ χFtan;jðtÞ

ð10Þ

the full derivation of Eq. (8) can be seen in [24,4]. The parameters
of Eq. (10) are; w is the depth of cut, C tan and Cnorm are the
tangential and normal cutting coefficient, χ is the ratio
Cnorm=C tan ; f a, is the actual feed and γ is an exponent that is not
greater than one.

The discrete delay τ of the system is divided into k equal
discrete time intervals ti; tiþ1

� �
where i¼ 0; 1; 2; ………ðk�1Þ

and ti ¼ iτk¼ iΔt ¼ iðtiþ1�tiÞ. Eq. (8) is represented in the discrete
interval ti; tiþ1

� �
as

y
: ðtÞ ¼AyðtÞþBðtÞyðtÞ�BðtÞyðt�τÞ ð11Þ
Eq. (11) is integrated between the limits ti and tiþ1 to become

yiþ1 ¼ eAΔtyiþ
Z tiþ 1

ti
eAðtiþ 1 � sÞ BðsÞyðsÞ�BðsÞyðs�τÞ½ �ds ð12Þ

Least squares method is then used to approximate the terms
yðsÞ; yðs�τÞ, and BðsÞ.

3.1. First-order least squares approximation

The first-order or linear least squares approximation of the
state term yðsÞ is seen from Eq. (7) to become

yðsÞ ¼ 1 sf g ∑
iþ1

l ¼ i

1
sl

( )
1 sl
� �" #�1

∑
iþ1

l ¼ i

1
sl

( )
yl ð13Þ

It should be noted that l¼ i and l¼ iþ1 in the summation signs
of Eq. (13) respectively correspond to terms at ti and tiþ1. This is
re-written as

yðsÞ ¼ 1 sf g
∑
iþ1

l ¼ i
1 ∑

iþ1

l ¼ i
sl

∑
iþ1

l ¼ i
sl ∑

iþ1

l ¼ i
sl
2

2
66664

3
77775

�1

∑
iþ1

l ¼ i
yl

∑
iþ1

l ¼ i
slyl

8>>>><
>>>>:

9>>>>=
>>>>;

ð14Þ

Eq. (14) is further re-written to become

yðsÞ ¼ 1 sf g
∑iþ1

l ¼ i1∑
iþ1
l ¼ isl

2� ∑iþ1
l ¼ isl

� �2
∑
iþ1

l ¼ i
sl
2 � ∑

iþ1

l ¼ i
sl

� ∑
iþ1

l ¼ i
sl ∑

iþ1

l ¼ i
1

2
66664

3
77775

∑
iþ1

l ¼ i
yl

∑
iþ1

l ¼ i
slyl

8>>>><
>>>>:

9>>>>=
>>>>;

ð15Þ
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