
A general solution for plane problem of anisotropic media containing
elliptic inhomogeneity with polynomial eigenstrains

Z.Q. Huang a,b, C.K. Chan c,n, G.H. Nie b

a School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
b School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
c Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong

a r t i c l e i n f o

Article history:
Received 30 October 2014
Received in revised form
24 January 2015
Accepted 26 February 2015
Available online 6 March 2015

Keywords:
Anisotropic
Elliptic inhomogeneity
Polynomial eigenstrains
Conformal mapping
Complex function method

a b s t r a c t

A general complex function method is proposed to solve the plane problem for a single anisotropic elliptic
inhomogeneity embedded in an infinite anisotropic medium. The system is subjected to polynomial eige-
nstrains as well as far-field stresses. A general procedure based on Laurent series is presented using continuous
conditions at the interface. Numerical examples are given and distribution of stresses and displacements at the
interface e are analyzed for prescribed polynomial eigenstrains of degrees 0, 1 and 2. Effect of inclined angle of
principal axes for anisotropic material on translation and rotation of the inhomogeneity is also illustrated. For a
circular inhomogeneity, its anisotropy may cause asymmetrical deformation under uniform eigenstrains.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Eshelby [1–3] pointed out that both internal and external elastic
fields of an ellipsoidal inhomogeneity (or inclusion) embedded in an
infinite isotropic elastic medium (or matrix) could be expressed by
eigenstrains, and conjectured that only ellipsoidal inhomogeneity has
uniform elastic field induced by uniform eigenstrains inside the
inhomogeneity. Subsequently, many researchers [4–6] studied the
system of the matrix/inhomogeneity systematically.

As most engineering materials contain different shapes of inho-
mogeneities or inclusions, many researchers have carried out studies
of Eshelby's property on inhomogeneities. Mura [7,8] studied the
problem of an m-pointed polygonal inclusion and concluded that the
stress field is uniform if m is odd for the inclusion induced by uniform
eigenstrains. Rodin [9] provided a proof that the stress field is non-
uniform for polygonal and polyhedral inclusions. Markenscoff [10]
showed that polyhedral shapes are impossible for inclusion with con-
stant eigenstresses. Recently, Zou et al. [11] showed that the Eshelby
tensor field inside a non-elliptical inclusion is quite non-uniform.

In the study of anisotropic medium containing inhomogeneities,
Stroh's formulation based on 2-D anisotropic elastic mechanics has
been widely used. By means of Stroh's formulation and Green's fun-
ction, Bacon et al. [12] studied anisotropic medium containing defects,

such as dislocations, inclusions and point defects. Ting and others
[13–15] studied the problem for anisotropic medium containing
elliptic inclusions with perfect interface and elliptic holes, and
obtained the real form of elastic stress field in the inclusion and stress
concentration factor for the hole. Using the method of con-
formal mapping, Ru [16] analyzed Eshelby's problem of an inclusion
of arbitrary shape within an anisotropic plane or half-plane of the
same elastic constants. Pan [17] presented an exact closed-form
solution for the Eshelby problem of polygonal inclusion in anisotropic
piezoelectric full- and half-planes using line integral on the boundary
of the inclusion with the integrand being the Green's function.
Recently, Xu et al. [18] provided a proof of Eshelby's property for
anisotropic inclusions with perfect or dislocation-like interface in
plane and anti-plane problems.

Apart from Eshelby's study on ellipsoidal inclusions subject to the
uniform eigenstrains, Asaro and Barnett [19], using elastic Green's
functions for a general infinite anisotropic medium, showed that when
an anisotropic ellipsoidal inclusion embedded in the medium under-
goes eigenstrains, expressed as a polynomial of degree M, the final
stress and strain state in the transformed inclusion is also a polynomial
of degree M. Kinoshita [20] and Mura [21] studied the problem for
infinite medium containing an anisotropic ellipsoidal inclusion sub-
jected to polynomial eigenstrains. Mura and Kinoshita analyzed elastic
field and displacement in the inclusion, and further developed the
result of Asaro and Barnett. Rahman [22] confirmed Eshelby's property
with his work on isotropic elliptical inclusion subjected to polynomial
eigenstrains. More recently, Liu [23] provide a proof of polynomial
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eigenstress inducing polynomial strain of the same degree in an
ellipsoidal inclusion. Chen [24,25] obtained closed-form solutions for
Eshelby's elliptic inclusions in isotropic medium about the anti-plane
and plane problem by means of complex analysis.

In the theory of elasticity, variational principle within the calculus of
variations is commonly used. In the early 1960s, Jaswon and Bhargava
[26] obtained elastic field for an elliptic inclusion using minimum
potential energy and functions of complex variables. Bhargava and
Radhakrishna [27–29] as well as Roy et al. [30,31] obtained the elastic
field for isotropic and orthotropic anisotropic media containing an
elliptic inclusion/inhomogeneity. Assuming that elastic field in inclu-
sions is in the form of polynomial when eigenstrains are polynomials,
Nie et al. [32–34] obtained analytical solutions for orthogonal aniso-
tropic medium containing an elliptic inclusion.

The study of solutions of anisotropic Eshelby's inhomogeneity with
non-uniform eigenstrains and its property are of great importance in
understanding the mechanism of strength and failure of such hetero-
geneous anisotropic materials. Using complex representative theory of
Lekhnitskii [35], this paper provides a concise method to obtain solu-
tions for the problem of anisotropic media containing an elliptic inho-
mogeneity. The complex functions are expanded in terms of Laurent
series in matrix and the inhomogeneity. According to the continuous
conditions of the stresses and displacements at the interface in the
physical plane, the sets of algebraic equations for the unknown coe-
fficients can be obtained and evaluated for a prescribed form of
polynomial eigenstrains.

The resulting solution for the 2D elastic field in the system is valid
for the case of arbitrary anisotropy for both inhomogeneity and matrix
materials as well as for the case of arbitrary location of elliptic inhom-
ogeneity in the matrix. Numerical examples are given to illustrate the
stresses and the deformation at the interface, including translation and
rotation for the inhomogeneity for polynomial eigenstrains of degrees
0, 1 and 2. Effect of inclined angle of the principal axes for anisotropic
material on translation and rotation of the inhomogeneity is discussed.
The method and procedure proposed in this paper can be readily used
to evaluate the strength and deformation of such heterogeneous
anisotropic materials under polynomial eigenstrains.

2. Mathematical formulation

The equilibrium equations for the plane problem are expressed
as follows:

∂σx

∂x
þ ∂τx y

∂y
¼ 0 ;

∂τx y

∂x
þ ∂σy

∂y
¼ 0 ; ð1Þ

where σx ; σy and τx y are components of stresses. Introducing
Airy stress function, Fðx; yÞ, as follows:

σx ¼ ∂2F
∂y2

; σy ¼ ∂2F
∂x2

; τxy ¼ � ∂2F
∂x∂y

; ð2Þ

The equilibrium Eq. (1) is then satisfied. The compatibility
equation is given by

∂2εx
∂y2

þ∂2εy
∂x2

¼ ∂2γxy
∂x∂y

; ð3Þ

where εx, εy and γx y are strain components.
The constitutive relations under the plane stress condition can

be written as follows:

εx ¼ a11σxþa12σyþa16τxy;

εy ¼ a21σxþa22σyþa26τxy;

γxy ¼ a61σxþa62σyþa66τxy; ð4Þ

where aij ¼ aji (i¼ 1;2;6,j¼ 1;2;6) are compliance elements and
can be expressed in terms of engineering material constants

such that

a11 ¼
1
Ex
; a22 ¼

1
Ey
; a21 ¼ a12 ¼ �νxy

Ex
¼ �νyx

Ey
;

a66 ¼
1
Gxy

; a61 ¼ a16 ¼
ηxy;x
Ex

; a62 ¼ a26 ¼
ηxy;y
Ey

;

in which Ex and Ey are two elastic moduli in the x- and y-directions,
respectively. νxy is Poisson's ratio, Gxy is shear modulus in the xy
coordinate plane, ηxy;x and ηxy;y, are mutual influence coefficients
characterizing respectively extensions in the x- and y-directions of
the coordinate axes due to the shear stress in the xy plane. When the
principal axes of the orthotropic materials coincide with the Carte-
sian coordinate axes, ηxy;x ¼ ηxy;y ¼ 0.

Substitution of Eqs. (2) and (4) into Eq. (3) leads to a compat-
ibility equation in terms of the stress function

a22
∂4F
∂x4

�2a26
∂4F
∂x3∂y

þð2a12þa66Þ
∂4F

∂x2∂y2
�2a16

∂4F
∂x∂y3

þa11
∂4F
∂y4

¼ 0:

ð5Þ
Solution for Eq. (5) has the form of

Fðx; yÞ ¼
X4

k ¼ 1

Fkðx þ μk yÞ ; ð6Þ

where μi; i¼ 1; :::;4; are four roots of the resulting characteristic
equation

a11μ4�2a16μ3þð2a12þa66Þμ2�2a26μþa22 ¼ 0: ð7Þ
For ideal elastic materials, the four roots correspond to two

pairs of complex conjugates, i.e., μ3 ¼ μ1;μ4 ¼ μ2, and μk ¼ αkþ iβk,
ðβk40; k¼ 1;2Þ where αk and βk are real and imaginary parts,
respectively. μk; k¼ 1;2 are two basic complex parameters char-
acterizing the degree of anisotropy. Eq. (6) can thus be written
as follows:

F ¼ 2Re
X2
k ¼ 1

FkðzkÞ ð8Þ

where

zk ¼ xþμky; k¼ 1;2; ð9Þ
indicate two physical complex planes for anisotropic materials.
Introducing two generalized stress functions such that

φkðzkÞ ¼
dFk
dzk

;φ0
kðzkÞ ¼

dφk

dzk
; k¼ 1;2; ð10Þ

then

∂F
∂x

¼ 2Re
X2
k ¼ 1

φkðzkÞ;
∂F
∂y

¼ 2Re
X2
k ¼ 1

μkφkðzkÞ: ð11Þ

The stress and displacement components can be expressed as
follows:

σxðx; yÞ ¼ 2Re
X2
k ¼ 1

μ2
kφ

0
kðzkÞ;

σyðx; yÞ ¼ 2Re
X2
k ¼ 1

φ0
kðzkÞ;

τxyðx; yÞ ¼ �2Re
X2
k ¼ 1

μkφ
0
kðzkÞ; ð12Þ

and

uðx; yÞ ¼ 2Re
X2
k ¼ 1

pkφkðzkÞ;
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