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a b s t r a c t

In this article, a time/wave domain analysis is presented for an axially moving pre-stressed nanobeam by
wavelet-based spectral element (WSE) method. WSE scheme is constructed as spectral element method
(SEM), except that Daubechies wavelet basis functions are used for transforming governing partial dif-
ferential equation. These basis functions help to rule out some deficiencies of SEM due to periodicity
assumption, especially for time domain analysis. Numerical examples are used for validating the accu-
racy and efficiency of model. The higher accuracy of WSE approach is then evaluated by comparing its
results with those of classical finite element and SEM. The effects of moving nanobeam properties, such
as velocity, pretention and nonlocal (small-scale) parameter, on vibration and wave characteristics and
dispersion curves are investigated. In addition, the instability of moving nanobeam is studied both
analytically and numerically considering divergence and flutter.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Axially moving structures and continua can be found in
numerous engineering devices in mechanical, civil, electrical and
aerospace applications, e.g., thread-lines in fabric industry, rolled
steel beams, chain and belt drives, high-speed sheets, magnetic
tapes, band saw blades, aerial cable tramways and so on. Due to
this pervasiveness, the analysis of moving structures and continua
has been a motivation for a large amount of publications, mostly
on axially moving beams. The lateral vibration of such axially
moving systems is commonly modeled as a pre-stressed beam. It
is necessary to forecast the dynamic characteristics of such sys-
tems precisely, in order to reach safe, reliable and successful
designs, while hazards and accidents are prevented.

There are many articles which analyze axially moving macro-
scale (classical) beams. The solutions of equation of motion for
moving classical beam models were obtained by several solution

techniques, containing the Galerkin's [1–3], assumed modes [4],
finite element [5], Green's function [6], transfer function [7], pertur-
bation [8], the Laplace transform [9], artificial parameters [10] and
the FFT-based spectral element methods (SEM) [11]. Despite the large
number of studies for axially moving classical beams, few analyses
have been conducted on similar problems at micro- and nano-scales.
Assumed modes method and Galerkin approach [12], higher-order
strain gradient solutions [13], and modified couple stress theory [14]
are used to investigate moving micro- and nano-scale beam models.

As a versatile numerical method, the FEM has an important role in
structural analysis. This method may provide accurate dynamic
response of a structure if the wavelength is large compared to the
mesh size. However, the FEM results become increasingly inaccurate
as the frequency bandwidth increases. As a drawback of FEM, it is well
known that a large number of FE's should be generated to obtain
trustworthy and accurate solutions, especially at higher frequencies.
Evidently, this provision may increase the computational time and
cost. These problems are generally resolved by SEM. SEM [15] trans-
forms the governing partial differential equation (PDE) of motion to a
set of ordinary differential equations (ODE's) by FFT. These space-
dependent ODE's are solved exactly, which are then used as dynamic
shape functions for SEM. It is well known that the wavelet-based
spectral element (WSE) model is an exact solution method for
dynamic analysis of structures [16–18]. WSE formulation is very
similar to SEM formulation, except that Daubechies wavelet basis
functions are used for transformation of governing PDE. The ensuing
coupled ODE's can be decoupled by performing a wavelet-dependent
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eigenvalue problem. The decoupled ODE's are then solved similarly as
in SEM. In SEM, the time window is dependent on the value of
damping and the dimensions of structure. It requires to be more wide
for weakly damped and shorter dimension structures. A potential
remedy to reduce these dependencies is to use artificial damping (AD)
[15]. By using non-periodic boundary condition assumptions [19] for
WSE, exactness of results could be free from those deficiencies pre-
viously noted such as lack of damping, structures having short
dimensions, and small time windows. It should be noted that WSE
method could also be used for analyzing undamped structures, where
SEM could not work. This model can be used in time domain analysis
without any transformations between different domains, something
unlike SEM. Periodic boundary condition-based WSE formulation [19]
can extract frequency dependent wave characteristics, like wave-
numbers, directly. Moreover, [20,21] show the application of wavelet
technique in FE domain.

Recent developments in research on axially moving structures
were reviewed by Marynowski and Kapitaniak [22]. However, to
the best of authors' knowledge, the WSE model has not yet been
introduced in the literature for axially moving nanobeam struc-
tures and this should be the most remarkable innovation of this
study. Thus, the objectives of this article are: (1) to develop a WSE
model for axially moving EB pre-stressed beams based on nonlocal
elasticity theory, (2) to highlight higher accuracy of this model as
compared with those of classical FEM and SEM and (3) to inves-
tigate the effects of nanobeam properties, such as velocity, pre-
tention and nonlocal parameter, on the vibration and wave char-
acteristics, dispersion curves and instability.

2. Mathematical model

Based on the formulation derived in Appendix A, the governing
equation for an element of axially moving EB pre-stressed beam
based on nonlocal elasticity theory can be represented as
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The force boundary conditions are given as
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where Q x; tð Þ and M x; tð Þ are the shear force and bending
moment define as
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Fig. 1 shows an element of the nanobeam where Mn_1 tð Þ and
Qn_1 tð Þ are the bending moment and transverse shear force
applied at x¼ 0, and Mn_2 tð Þ and Qn_2 tð Þ are the bending moment
and transverse shear force applied at x¼ Le.

3. Temporal discretization

The scaling transform of functions wðx; tÞ and f ðx; tÞ can be done
by a sequence of Daubechies scaling function φm;HðtÞ at an arbi-
trary scale m, as

w x; tð Þ ¼ 2m=2W x; τð Þ; W x; τð Þ9
X
H

wH xð Þφ τ�Hð Þ; HAZ ð5Þ

Fig. 1. A finite element of axially moving pre-stressed nanobeam.

Nomenclature

c constant transport speed [m/s]
cD divergence speed [m/s]
cF flutter speed [m/s]
e0a nonlocal (small-scale) parameter [nm]
EI flexural rigidity [Nm2]
f x; tð Þ excitation force [N]
f c cut-off frequency [Hz]
f nyq Nyquist frequency [Hz]

fbFgg global WSE nodal forces [N; Nm]

k WSE wavenumber [rad=m]
kEB wavenumber for the Euler-Bernoulli beam theory

[
ffiffiffiffiffiffiffiffi
rad

p
=m]

½bKg� global dynamic stiffness matrix
L span between two end supports [m]
Le length of an element [m]

M x; tð Þ bending moment [Nm]
n number of sampling points
N order of the Daubechies wavelet
Nx constant axial pretension [N]
Q x; tð Þ shear force [N]
rN tensile force-to-flexural rigidity ratio [1=m2]
Γ1

first-order connection coefficient matrix (time
domain)

Γ2 second-order connection coefficient matrix (time
domain)

iγ eigenvalues of Γ1 [rad=s]
Λ1

first-order connection coefficient matrix (wave
domain)

Λ2 second-order connection coefficient matrix (wave
domain)

iλ eigenvalues of Λ1 [rad=s]
ρA mass per length of beam [kg=m]
φ τ�kð Þ Daubechies scaling function at an arbitrary scale
Ω1

j�k, Ω
2
j�k connection coefficients

A. Mokhtari et al. / International Journal of Mechanical Sciences 105 (2016) 58–69 59



Download English Version:

https://daneshyari.com/en/article/782223

Download Persian Version:

https://daneshyari.com/article/782223

Daneshyari.com

https://daneshyari.com/en/article/782223
https://daneshyari.com/article/782223
https://daneshyari.com

