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a b s t r a c t

This paper aims to develop a new non-classical Bernoulli–Euler model, taking into account the effects of
a set of size dependent factors which ignored by the classical continuum mechanics. Among those factors
are the microstructure local rotation, long-range interactions between a particle and the other particles
of the continuum and the surface energy effects. The model used the modified couple-stress theory to
study the effect of the local rotational degree of freedom of a specific particle. Furthermore, the surface
elasticity model developed by Gurtin and Murdoch has been used to determine the surface energy effects
on the behavior of the particle. The effects of the local rotation and surface energy are investigated in the
framework of nonlocal elasticity theory, which is employed to study the nonlocal and long-range
interactions between the particles. In addition, Poisson's effect incorporated in the newly developed
beam model. The equations of equilibrium and complete boundary conditions of the new beam are
derived using the principle of virtual work.

The developed model is validated, by comparing the obtained results with benchmark results. To
illustrate the new model, analytical solutions for the static bending and critical buckling load are
obtained. Numerical results reveal the significant effects of the nonlocal, microstructure, surface energy,
length-to-height ratio and Poisson on the static bending and critical buckling load of nanobeams.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is clear that in spite of the power of classical local elasticity,
in its domain of applications, it fails to describe many important
size-dependent phenomena [5–7,18]. In the recent era of
nanoscience and nanotechnology, many factors are responsible
on the breakdown of classical continuum mechanics, among of
them are the effects of microstructure degrees of freedoms, the
long-range cohesive interaction and the surface energy. Many
papers have been published to discuss the effect of each of these
factors and the range of size dependency to consider each factor
effect into account. Few publications have investigated the
combined effects of more than one factor at the same time. The
couple effects of nonlocal elasticity and surface properties on the
static or dynamic response of nanostructures was studied by
[26,4,42,41,16] and [17]. Effects of surface stress and micro-
structure on the response of micro/nanostructures were pre-
sented by [32,11,10,33,12,38]. However, no work includes the
three effects at the same time and consequently the aim of this

paper is to study the relative effects of all these three mentioned
factors, simultaneously.

Voigt [37] assumed that the transfer of interaction between
two neighborhood elements of a body is not only by means of
force vectors but also by face-moment and body moment vectors.
Rotation in continuum solid mechanics is divided into two kinds;
one is independent called micro-polar rotation, which represents
one sort of microstructure effects. The second is the anti-
symmetric part of the displacement gradient field, called local
rotation. In fact, the local rotation, at a point of the continuum,
represents a constraint on the displacements at this point that
induce an additional couple stress and, consequently, contributes
on the strain energy density of the continuum. Gao and Chen [8]
and Gao and Lin [9] have derived the constitutive equations of the
nonlocal body moment associated with local rotation, based on
the axiom of nonlocal continuum fields and nonlocal quasi-
continuum theory.

From the other side, the nonlocal continuum theory considers
the long-range interatomic cohesive force, but not considered as
one of the microstructure effects. Consequently, it yields results
which are dependent on the size of the body and similar to the
classical continuum theory, where the lattice particle are taken as
an idealized mass point [3]. It is not a theory for a continuum
embedded with microstructure, but only for material involving
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long-range interaction. Assume a is the interatomic distance; c is
the range of the cohesive force; and λ is the external characteristic
length (such as the width of a crack or the thickness of a nano-
layer). Thus, the size dependent range of application for the
validity of the local elasticity theory which is based on the concept
of short range cohesive force, is given by a{c{λ. But for the cases
of a{λ{c, the local elasticity is no longer valid and nonlocal
continuum should be applied [31].

The surface energy effect is the third factor responsible for the
breakdown of the classical continuum mechanics. The surface is
regarded as a membrane with a negligible thickness [14,15,43],
where the atoms arrangements and material properties differs
from those of the bulk material [44,45]. For a larger size, surface
energy effects can be ignored because the ratio of the surface layer
volume to the bulk volume is very small. However, for a higher
ratio of surface layer volume to the bulk volume, such surface
effect becomes effective [23].

In the present paper, a nonlocal couple-stress elastic con-
tinuum model taking into account the effect of surface energy is
proposed. Eringen's nonlocal elasticity theory [6]; modified
couple-stress theory [40] and surface elasticity theory developed
by Gurtin and Shenoy [14,15], are exploited to develop an inte-
grated model to investigate simultaneously the effects of long-
range interatomic interactions, microstructure local rotation and
surface energy effect. For the sake of clarification, details of the
model are demonstrated while applying the steps of the model on
Bernoulli–Euler nano-beam, as an example.

2. Theoretical formulations

Based on the Bernoulli–Euler hypothesis, all applied loads and
geometry are such that the axial and lateral displacements u and
w; respectively, of a point at a height z measured from the mid-
plane and a distance x along the beam length in its deformed state,
are assumed as to be functions of only x and z coordinates, such
that, e.g., [34];

u x; zð Þ ¼ zϕ xð Þffi�z
dw xð Þ
dx

and w x; zð Þ ¼w xð Þ ð1Þ

where ϕ xð Þ is the rotation angle of the centroidal axis of
the beam.

2.1. The modified couple stress theory

According to the modified couple stress theory (MCST), [40],
the constitutive equations are given by

σij ¼ 2μεijþλεkkδij ð2Þ

mij ¼ 2l2μχ ij ð3Þ

where σij and mij are, respectively, the components of the Cauchy
stress and the deviatoric part of the couple stress tensor, λ and μ
are Lame's constants in classical elasticity and δij is the Kronecker
delta. The material length scale parameter l measures the effect of
couple stress [24,25]. Note that throughout the paper, the sum-
mation convention and standard index notation are used, with the
Greek indices running from 1 to 2 and the Latin indices from 1 to
3 unless otherwise indicated.

The components of the infinitesimal strain εij and the sym-
metric curvature tensor χ ij are defined as [40]

εij ¼
1
2

ui;jþuj;i
� � ð4Þ

χ ij ¼
1
2
θi;jþθj;i
� � ð5Þ

with ui being the displacement components and θi being the
components of the rotation vector given by

θi ¼
1
2
εijkuk;j ð6Þ

where εijk is the permutation tensor.
From Eqs. (1) and (4)–(6), the following non-zero components

of rotation vector, strain tensor and symmetric curvature tensor in
the bulk of the current Bernoulli–Euler beam, are respectively,
given by

θy tð Þ ¼ �dw x; tð Þ
dx

ð7Þ

εxx tð Þ ¼ �z
d2w x; tð Þ

dx2
ð8Þ

χxy tð Þ ¼ �1
2
d2w x; tð Þ

dx2
ð9Þ

Substituting Eq. (8) into Eq. (2) and Eq. (9) into Eq. (3), the
following non-zero stress component are obtained

σxx ¼ �z ~E
d2w x; tð Þ

dx2
; σyy ¼ σzz ¼ �z

ν
1�νð Þ

~E
d2w x; tð Þ

dx2
ð10Þ

and

mxy ¼ � l2μ
d2w xð Þ
dx2

ð11Þ

The effective modulus of elasticity ~E of the bulk can be defined
as;

~E ¼ E 1�νð Þ
1þνð Þ 1�2νð Þ ð12Þ

where E and ν are, respectively, Young's modulus and Poisson's
ratio of the beam material.

2.2. Surface elasticity theory

According to the surface elasticity theory [14,15], the surface
layer of a bulk elastic material satisfies distinct constitutive
equations involving surface elastic constants and surface residual
stress. The governing equations for the surface layer of zero
thickness as given by [14,15] are as follows

ταβ ¼ τsþ λsþμs

� �
uγ;γ

� �
δαβþμs uα;βþuβ;α

� �
�τsuβ;α ð13aÞ

τnα ¼ τsun;a ð13bÞ
where α, β represent the in-plane Cartesian coordinates of the
surface. μs and λs are the surface elastic constants and τs is the
residual surface stress (i.e., the surface stress at zero strain). These
three constants μs; λs and τs can be determined from atomistic
simulations (e.g., [23]). τnα is the out-of-plane components of the
surface stress tensor.

From Eqs. (13) and (1), the non-zero components of the surface
stresses are related to the displacement as follows

τxx ¼ τs�z 2 μsþλs
� �d2w

dx2
and τnα ¼ τsnz

dw
dx

ð14a;bÞ

where nz is the z-component of the unit outward normal vector
n to the beam lateral surface.

2.3. Nonlocal differential constitutive relation

In the nonlocal elasticity theory, stress at a point in the con-
tinuum is a function not only of the strains at that point, but also of
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