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a b s t r a c t

As an idealized model of modern beam-type structures, the double-beam system has been specified in
recent decades. While there have been various research efforts on the double-beam system, most of them
are over-simplified, among which the viscoelastic damping mechanism of interlayer is often neglected.
This paper presents a semi-analytical method to investigate the natural frequencies and mode shapes of a
double-beam system interconnected by a viscoelastic layer. The two beams can be with different beam-
masses, beam flexural rigidities and boundary conditions, as well as with and without the Winkler layer
below lower beam, indicating that there is no restriction or assumptions on beams connected with the
viscoelastic layer damping. The modal-expansion iterated method is further applied to determine the
forced vibration responses in the double-beam system based on the natural frequencies and mode shapes
obtained from the free-vibration analysis. A specific orthogonality condition for the double-beam system is
derived, and then applied to decouple the differential equations of motion. Numerical examples are
demonstrated and discussed in details to verify the efficiency of the proposed methodology, which can
further help characterize the dynamic responses and design work for double-beam structures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Beam-type structures are an essential element in structural
systems and are widely used in engineering disciplines, especially
in civil, aerospace and mechanical engineering. Corresponding
research efforts on the dynamic behavior and vibration suppression
on beam-type structures attract a great deal of attention from
researchers and engineers. All investigations aim to find what
exactly the characteristics of beam-type structural vibration is, and
then, indicate a means to reduce or control the vibration into an
accepted level. On one hand, single-beam structures, the one-
dimensional continuous systems with various boundary condi-
tions and different excitations, have been studied extensively due to
its simplicity. On the other hand, double-beam systems, consisting
of two one-dimensional continuous beams connected by a uni-
formly distributed viscoelastic layer, have been explored in the past
decade due to their unique design for modern engineering appli-
cations such as sandwich or composite beams, continuous dynamic
vibration absorbers, and active constrained layer damping.

Most research efforts in the literature have simplified the double-
beam systems as two identical beams with simply supported

boundary conditions. Among those, the viscoelastic damping char-
acteristics of the connecting layer between the two beams have been
ignored [1–14]. To take into account the damping effect, researchers
frequently make some assumptions and simplifications. For example,
based on their early work on the axially-loaded damped Timoshenko
beam on a viscoelastic foundation [15], Chen and Sheu [16,17] studied
the free vibration, dynamic response and static buckling of two
identical beams with a viscoelastic material layer in between. Li and
Hua [18] introduced a finite-element method for a double-beam sys-
tem which can have unequal masses, unequal flexural rigidities and
arbitrary boundary conditions. However, to take into account the
damping effect, they assumed the two beams must be identical. Kessel
and Raske [19] solved a double-beam system under the cyclic moving
load with both individual damping and relative damping. While the
two beam components can be different, they must have same simply
supported boundary conditions. Abu-Hilal [20] investigated the
dynamic response of a double-beam system with viscoelastic layer
damping traversed by a constant moving load and obtained the
dynamic deflections of both beams in analytical closed forms. By using
the direct Lyapunov method and simplifying the damping as viscous
damping of each beam itself, Pavlovic et al. [21] investigated the sta-
bility and instability of a double-beam system subjected to compres-
sive axial loading. In those two papers, the two beams are identical
with same simply supported boundary condition. Vu et al. [22]
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presented an exact method to analyze a two-beam system with a
viscoelastic layer, with boundary conditions on the same side of the
system being same and the two identical beams. Irie et al. [23] dis-
cussed the steady-state responses of a double-beam system under the
sinusoidal force and a transfer matrix technique is adopted for solving
the differential equations, but the damping considered in it is beam
internal damping instead of the viscoelastic layer damping. Cottle [24]
explored the layered beam with mixed boundary conditions and a
semi-analytical method was applied to solve the equations with the
assumption of same lateral displacements in beams. Xin and Gao [25]
applied the double-beam system into a specific engineering structure,
a bridge with a viscoelastic layer and a slab track on it, and used the
finite element method and multibody dynamics theory to solve the
problem. Dublin and Friedrich [26] obtained the forced vibration
responses for two elastic beams interconnected by spring-damper
system, with two spring-damper systems between two beams instead
of uniformly distributed spring-damper systems. Oniszczuk [27] stu-
died the analytical solutions for the damped transverse vibration of a
simply-supported double-string system which has two identical vis-
coelastic strings and a viscoelastic layer between them. Oniszczuk's
model was later adopted by Wu and Gao [28] to obtain the responses
of a simply supported viscously damped double-beam system under
moving harmonic loads. Other similar structures have also been ana-
lyzed, such as sandwich beams [29–33], continuous dynamic vibration
absorbers [34–38], and composite layered foundations [39].

While there have been plenty of research efforts investigating
the double-beam systems as shown above, most of them treat the
viscoelastic layer damping as zero. Some limited efforts consider
the damping effect with simplified double-beam systems. In real
engineering practices, such as floating slab track on bridge, robotic
arm in space station and two-stage vibration isolation system for
precision instrument, the damping is an inherent properties of the
materials for viscoelastic layer and its value cannot be ignored and
the structure cannot be always simplified as above. Therefore, a
general double-beam system with arbitrary viscoelastic layer
damping must be considered. This paper presents a semi-
analytical method to obtain the natural frequencies and corre-
sponding mode shapes for a general double-beam system, in
which the viscoelastic layer damping is nonzero and two beams
may have Winkler layer below the lower beam, unequal masses,
unequal flexural rigidities and arbitrary boundary conditions. In
addition, to the double-beam system with viscoelastic layer and
the Winkler layer, the forced vibration excited by arbitrary loading
is analyzed using the classical modal expansion method and a
proposed iteration method, based on the natural frequencies and
mode shapes obtained from the free vibration analysis. A specific
orthogonality condition for that double-beam system is derived
and applied to decouple differential equations. The natural fre-
quencies and mode shapes are calculated by the semi-analytical
method for six cases of arbitrary masses, arbitrary flexural rigid-
ities and arbitrary boundary conditions models. Furthermore,
various double-beam system models are studied with a con-
centrated harmonic force in the midspan of upper beam to con-
duct the systematic parametric analysis of the structural resonance
condition and dynamic responses.

2. Formulation of the problem

As shown in Fig. 1, the physical model of a double-beam system
includes an upper beam and a lower beam joined by a uniformly
distributed-connecting viscoelastic layer and with a Winkler layer
below the lower beam. While homogeneous and prismatic, both
beams can have different masses, flexural rigidities, and boundary
conditions. The force-equilibrium equations are obtained based on
the differential elements of both beams and the forces (Fig. 2) as:
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where Wi x; tð Þ, Vi x; tð Þ, and Mi x; tð Þ are the transverse deflections,
shear forces, and bending moments in the beams, respectively.
Further, f Ii x; tð Þ is the inertia force of each differential beam ele-
ment with x and t being the spatial co-ordinate and the time and
i¼1 or 2 representing the upper beam (1) or lower beam (2). The
material constants K, C, and KW are the stiffness, damping coeffi-
cient of the viscoelastic layer, and the stiffness of the Winkler
layer, respectively. In addition, f 1 x; tð Þ and f 2 x; tð Þ are the exciting
forces acting on the upper and lower beams, respectively.

Substituting the bending moment Mi x; tð Þ ¼ EiIi
∂2Wi
∂x2 and the

inertia force f Ii x; tð Þ ¼ ρiAi
∂2Wi

∂t2 into Eq. (1), and considering the two
beams as uniform and homogeneous which can be denoted as Ei
Ii ¼ ei and ρiAi ¼mi, the governing equations of motion of the
double-beam system (Fig. 1) can be derived as:
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The initial conditions in general form are as follows:

W1 x;0ð Þ ¼W10 xð Þ; W2 x;0ð Þ ¼W20 xð Þ; _W1 x;0ð Þ ¼ V10 xð Þ; _W2 x;0ð Þ
¼ V20 xð Þ ð3Þ
The commonly used boundary conditions at the ends (x¼ 0, L)

are listed as follows:

Simply supported : Wi 0; tð Þ ¼Wi L; tð Þ ¼Wi
″ 0; tð Þ ¼Wi

″ L; tð Þ ¼ 0

ð4aÞ

Clamped : Wi 0; tð Þ ¼Wi L; tð Þ ¼Wi
0
0; tð Þ ¼Wi

0
L; tð Þ ¼ 0 ð4bÞ

Fig. 1. The physical model of a double-beam system; (a) free vibration model; (b) forced vibration model.
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