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a b s t r a c t

In many industrial processes, geometric strip defects may be generated by buckling due to excessive
residual stresses and these defects are difficult to control. Usually residual stresses have complex dis-
tributions so that defects with complex shapes appear. In strip rolling, strips are fabricated under tension,
which has an impact on the shape and the amplitude of the defects. This tension can hide completely or
partially the defects that increase and evolve during tension release. In this work we calculate flatness
defects of strips generated by residual stresses, with and without tension, by using a shell finite element
model based on the asymptotic numerical method (ANM).

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In thin structures, buckling phenomena are usually associated
with collapse of structures. In the load–displacement response,
buckling loads correspond to bifurcation or limit points (see Fig. 1).
In many manufacturing processes, buckling induces geometrical
defects which can decrease the product quality, for example in
strip rolling (see Fig. 2). These flatness defects may have various
origins, particularly thermal or/and mechanical. The present study
focuses on numerical modeling of buckling phenomena occurring
in strip rolling, the plate being submitted both to inter-stand
tension and residual stresses. If the tension is sufficiently large, the
strip may remain perfectly flat during the process and the flatness
defects may appear only off-line, when the applied tension is
released. Hence two instability problems will be considered in this
paper: buckling under residual stress in the presence of a global
tension and buckling due to the tension release in the presence of
residual stresses.

Several models exist in the literature for buckling phenomena
in thin strips due to residual stresses. This paper addresses parti-
cularly those involved in strip rolling. Since buckling relaxes

residual stresses, Roddeman et al. [1–3] have presented a simple
model based on a local relaxation of compressive residual stresses
by introducing an additional in-plane deformation to the local
strain field. This approach is widely used for membrane problems.
A similar procedure has been used by Counhaye et al. [4] and
implemented by Abdelkhalek et al. [5–8] in strip rolling models.
This model leads to stress fields in agreement with experiments
but it is intrinsically unable to predict geometrical flatness shapes.

Other papers focus on the detection of buckling loads due to
increasing residual stresses. Most of them present analytical and/
or semi-analytical studies in the simple case of a uniaxial residual
stress field, the method being generally based on the Rayleigh–
Ritz technique [9–13]. Nevertheless, Coman [14,15] was able to
solve more intricate buckling problems via an analytical asymp-
totic method. General in-plane stress fields were accounted by
Marchand [16] by using shell finite elements within the linear
buckling subroutine of the code Abaqus. Some questionable
hypotheses are often done in these works, for instance artificial
boundary conditions to enforce wavy modes. In this paper we try
to remove such artificial procedures.

To our knowledge, there are only few post-buckling analyses
about strip instabilities due to residual stresses generated by a
rolling process. Among them the work of Fischer et al. [12] men-
tioned previously. Another one is developed by Yukawa et al. [17]
and relies on Riks method and plate finite elements. Also we find
the model presented by Nakhoul et al. [18,19] which consists of a
reduced-order technique that assumes a harmonic mode in the
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longitudinal direction and estimates the stress release due to
buckling by combining bifurcation theory and one-dimensional
finite elements. Buckling due to residual stresses is considered in
these papers, but only Fischer et al. [12] studied buckling during
tension release that is more difficult and more important in
practice. This latter buckling problemwill be treated in the present
paper with a more advanced model.

This work describes a numerical model to compute post-buckling
phenomena generated by a double loading combining residual
stresses and global tension. It is designed for simulating the behavior
of a strip during and after a rolling process. Especially the tension
release leads to difficult post-buckling analyses that require an effi-
cient path-following algorithm: the asymptotic numerical method
(ANM), a powerful tool to solve nonlinear problems involving
instabilities, has been chosen. Critical points and corresponding
modes are computed using a bifurcation indicator. The effectiveness of
such procedures have been established in previous works and for
similar problems, for instance in [20–23]. The chosen shell finite
element is also well established [24,25].

2. Basic numerical techniques

2.1. Shell model

The kinematic formulation is based on the classical plate and
shell theory. The position vector x of a material point is expressed
in the initial configuration as follows (see Fig. 3).

x θ1;θ2;θ3
� �¼ r θ1;θ2

� �þθ3a3 θ1;θ2
� � ð1Þ

where r is the mid-surface vector and a3 is the director vector
of the surface in the considered point and (θ1,θ2,θ3) represents the
convective curvilinear coordinates. Assuming a linearly varying
displacement in the thickness, this displacement is written as:

u θ1;θ2;θ3
� �¼ v θ1;θ2

� �þθ3 ω θ1;θ2
� � ð2Þ

Variables v and ω represent respectively the mid-surface dis-
placement and the difference between the director vectors in the
deformed and the non-deformed configurations of the shell.

The Enhanced Assumed Strain (EAS) concept introduced in
references [24–26] is used in this paper to improve the perfor-
mance of elements. It is based on an enrichment of the deforma-
tion by introducing an additional strain field ~γ , independent of the
displacement and chosen orthogonal to the stress field:

γ ¼ γcþ ~γ
γc ¼ γl uð Þþγnl u;uð ÞR
ΩS

t : ~γ dΩ¼ 0

8><
>: ð3Þ

where γc is the compatible Green-Lagrange strain decomposed
into linear (γl) and non-linear (γnl) components. S is the second
Piola-Kirchhoff stress tensor (t in upper index is transposition). ~γ is
chosen to ensure linear variation of the strain through the shell
thickness [24].

2.2. A general strategy to solve the two-parameters buckling
problem

The mechanical formulation is based on the Hu-Washisu
functional which considers the displacement u, the strain γ and
the stress field S as three independent variables. We consider a
linear constitutive law in the present study.

Two kinds of mechanical loading (parameters) are considered
in this model:

� Uniform edge load in the x-direction: in modeling flatness
defects in thin strip rolling, the tension in the edge ∂Ω3 (see
Table 1) is used to approach the rolling conditions (rolling
tension).

� Residual stresses as internal loading for the structure: in strip
rolling, residual stresses can be caused by heterogeneous plastic
deformations or by heterogeneous thermal fields.

Hence, taking into account relations (3), the stationary condi-
tion of the Hu-Washisu functional leads to the following equa-
tions:R

ΩS
t : δγcdΩ¼ λðPÞ

R
∂Ω3

PδudsR
ΩS

t : δ ~γdΩ¼ 0

S¼ℂ : γcþ ~γ
� �þλðSÞSres

γc ¼ γl uð Þþγnl u;uð Þ

8>>>>><
>>>>>:

ð4Þ

where λ(P) and λ(s) are two scalar parameters used to vary the
loading levels corresponding respectively to the tension (P) and to
the residual stress (Sres). ℂ is the matrix of elastic constants.

The proposed model consists of four steps summarized in
Table 1. Each step corresponds to a typical loading: a tension
applied on the edge ∂Ω3 or a residual stress field. Generally, edge
∂Ω1 is clamped or pinned, edges ∂Ω2 and ∂Ω4 are simply sup-
ported, free or have symmetry planes and ∂Ω3 is simply
supported.

Each step is solved using the ANM [20–22,25] and the finite
element method as detailed in appendices. In step 2 the bifurca-
tion indicator [20,21,23,25] is used to calculate the critical load λðSÞc
and the buckling mode. It is well adapted for problems where pre-
buckling is nonlinear.
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Fig. 1. A typical response curve in buckling analysis.
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Fig. 2. Example of flatness defect observed in strip rolling.
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Fig. 3. Geometrical and kinematical description of the shell.
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