Tetrahedron 74 (2018) 2056-2062

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Cembranoids from Eunicea sp. enhance insulin-producing cells

G. Porras ^{a, 1}, A.R. Díaz-Marrero ^{a, 2}, J.M. de la Rosa ^a, L. D'Croz ^{b, c}, N. de Pablo ^d, G. Perdomo ^e, I. Cózar-Castellano ^d, J. Darias ^a, M. Cueto ^{a, *}

ABSTRACT

producing cells (beta-cells) was evaluated.

^a Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain

^b Departamento de Biología Marina y Limnología, Universidad de Panamá, Panama

^c Smithsonian Tropical Research Institute, STRI, Box 0843-03092, Balboa, Panama

^d Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Spain

^e Facultad de Ciencias de la Salud, Universidad de Burgos, Burgos, 09001, Spain

ARTICLE INFO

Article history: Received 1 December 2017 Received in revised form 28 February 2018 Accepted 5 March 2018 Available online 7 March 2018

keywords: Octocorals Eunicea Cembranoids Beta-pancreatic cells

1. Introduction

Species of Eunicea are commonly found on Caribbean Sea coral reefs. The genus is comprised of approximately fifteen documented species, and the most studied have been: *Eunicea* sp., *E. tourneforti*, E. succinea, E. mammosa, E. knighti, E. pinta, E. asperula and *E. calyculata*. This genus biosynthesizes diterpenoids by a network of oxidation processes that generate the chemical structures of the metabolites depicted in Fig. 1.

Our interest in studying octocorals from both sides of the Isthmus of Panama¹⁻³ led us to analyze specimens of *Eunicea* sp. collected from the Caribbean coast of Panama. From a crude extract of Eunicea sp., the cembranoids 1–15 have been isolated after flash chromatography followed by HPLC, Fig. 1. The new compounds 1–9 together with the known metabolites euniolide $(10)^4$ and peunicin

* Corresponding author.

 $(11)^5$ typify a class of cembranoids with an oxidized isopropenyl group involved in the formation of an α -methylene- γ -butyrolactone ring. In 14-deoxycrassin (12),⁶, the isopropenyl group forms part of a six memebered lactone ring, whereas compounds $13-15^{7-9}$ lack the lactone ring.

2. Results and discussion

Nine new cembranoids **1–9** containing an α -methylene- γ -butyrolactone together with the known

diterpenes 10–15 have been isolated from a crude extract of Eunicea sp. and their structures were

established by spectroscopic methods. The proliferative effect of six of these compounds on insulin-

Compound 1 was obtained as an oil whose EIMS spectrum showed a peak at m/z [M]⁺ 332, which corresponds to the chemical formula C₂₀H₂₈O₄ (HREIMS) (*m*/*z* 332.1994 [M]⁺, calcd 332.1988). This corroborated the ¹³C NMR spectrum, which displayed correlations in the HSQC spectrum indicative of five quaternary, six methine, six methylene, and three methyl carbons (Table 1). Absorptions for a hydroxyl group at 3441 cm^{-1} and a carbonyl at 1742 cm^{-1} were observed in the IR spectrum.

Connectivity information obtained from COSY, HSQC, and HMBC experiments unambiguously determined the planar structure of compound **1** as a cembranolide with an epoxide at C-3–C-4, two methyl groups of trisubstituted olefins at C-8 and C-12 respectively. an allvlic alcohol at C-13 and а C-14-C-16 α -methylene- γ -lactone mojety. ¹H-¹H COSY experiments

© 2018 Elsevier Ltd. All rights reserved.

E-mail address: mcueto@ipna.csic.es (M. Cueto).

¹ Present address: Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CENAT-CONARE, 1174-1200 San José, Costa Rica.

² Present address: Department of Organic Chemistry, University Institute of Bio-Organic Chemistry "Antonio González" (CIBICAN), University of La Laguna, 38,206.

Fig. 1. Cembranolides isolated from Eunicea sp.

established three spin systems: H-3–H-13 (fragment I), H₂-5–H-7 (fragment II) and H₂-10–H-11 (fragment III). HMBC correlations allowed us to join these fragments. Correlations of H₃-18/C-3, C-4 and C-5 connected fragment I and II through C-4. HMBC correlations of H₃-19 with C-7, C-8 and C-9 place H₃-19 at C-8 and the correlations of H-10a ($\delta_{\rm H}$ 1.80 ppm) with C-9 and of H-9b ($\delta_{\rm H}$ 2.30 ppm) with C-10 bind fragments II and III, whereas the correlations H₃-20/C-11, C-12 and C-13 connect fragments I and III. The isopropenyl group at C-1, characteristic of marine cembranoids, forms part of an α -methylene– γ –lactone ring between C-1 and C-

Fig. 2. COSY (–), HMBC (\rightarrow) correlations and selected NOE effects (\leftrightarrow) of **1**.

14, in virtue of the HMBC correlations H₂-17/C-1, C-15, C-16 and H-14/C-15, C-16. The ¹³C chemical shifts of C-3 (δ 60.4), C-4 (δ 60.2) and C-13 (δ 68.8) indicated that there is an epoxide between C-3 and C-4 and an allylic alcohol at C-13. Thus, the structure of **1** was established, with seven degrees of unsaturation as shown in Fig. 2.

The relative configuration of **1** is assigned based on NOESY experiments and coupling constants. The *cis*-fusion of the lactone ring was established by a strong NOE interaction between H-1 and H-14, which is consistent with the coupling constant ${}^{3}J_{1-14} = 8.4 \text{ Hz}.^{10}$ NOE correlations of H-3 with H-5a, as well as of H₃-18 with H-1, suggested a *trans*-substituted epoxide ring. The high field signal of Me-19 ($\delta_{C} = 15.7 \text{ ppm}$) suggested an *E* geometry for the olefin at C-7/C-8,¹¹ which was confirmed by the NOE observed between H-7 with H-10a ($\delta_{H} = 1.80 \text{ ppm}$). The NOE interaction of H₃-20 with H-11 established the *Z* geometry for the olefin at C-11/C-12. Finally, the observed NOE between H-13 and H-3 fix the configuration of the hydroxyl group as depicted in Fig. 2. The relative configuration of **1** is thus 1*S*^{*}, 3*S*^{*}, 4*R*^{*}, 7E, 11*Z*, 13*R*^{*}, 14*R*^{*}.

Compound **2** was obtained as a colorless oil, and its molecular formula was determined as $C_{22}H_{30}O_5$ by HREIMS [*m*/*z* 374.2104 [M]⁺, calculated 374.2093]. Absorption for carbonyl groups at 1753 cm⁻¹ was observed in the IR spectrum.

The 1 H and 13 C NMR data (Table 1) resembled those of compound **1**, with the primary difference being an acetoxy group

Table 1

 ^{1}H NMR (500 MHz) and ^{13}C NMR (125 MHz) data for compounds 1–3 in CDCl₃.

Pos.	1		2		3	
	$\delta_{\rm H}$, mult (J in Hz)	δ_{C}	$\delta_{ m H}$, mult (J in Hz)	δ_{C}	$\delta_{\rm H}$, mult (J in Hz)	δ_{C}
1	3.17 m	40.4	3.17 m	40.6	3.16 m	40.6
2	1.80 m 2.47 ddd (5.1, 11.7, 14.7)	29.0	1.75 m 2.02 m	28.3	1.75 ddd (2.8, 9.8, 14.8) 2.42 m	28.8
3	3.06 dd (4.8, 9.3)	60.4	3.05 dd (4.8, 9.6)	59.8	2.77 dd (4.7, 10.0)	60.2
4	-	60.2	—	60.1	-	60.0
5	<i>a</i> 1.20 ddd (3.6, 13.2, 13.2) <i>b</i> 2.15 ddd (2.7, 5.1, 13.2)	39.6	a 1.24 m b 2.15 m	39.3	<i>a</i> 1.07 ddd (3.5, 13.2, 13.2) <i>b</i> 2.16 ddd (2.8, 4.7, 13.2)	39.9
6	1.98 m 2.31 m	23.2	1.91 m 2.40 m	23.0	1.95 m 2.31 m	23.2
7	5.21 dd (7.5, 7.5)	123.2	5.21 dd (7.5, 7.5)	123.1	5.23 dd (8.2, 8.2)	123.1
8	-	138.5	_	138.6	-	137.7 ^a
9	a 1.79 m b 2.30 m	40.3	1.77 m 2.36 m	40.2	1.99 dd (12.3, 12.3) 2.30 m	35.7
10	a 1.80 m b 2.31 m	29.1	1.90 m 2.37 m	29.4	0.90 m 2.42 m	29.2
11	5.55 m	127.7	5.59 dd (4.2, 11.9)	128.4	2.96 dd (3.5, 11.9)	63.6
12	-	135.8	_	132.6	_	63.2
13	4.94 br d (4.8)	68.8	5.86 s	70.4	3.82 s	72.0
14	4.70 d (8.4)	83.5	4.84 d (8.4)	82.3	4.83 d (8.5)	79.3
15	_	138.1	_ ```	138.2	_	137.5 ^a
16	-	169.9	_	169.2 ^a	-	169.4
17	5.42 d (3.3) 6.19 d (3.6)	118.7	5.36 d (3.4) 6.19 d (3.6)	117.5	5.41 d (3.2) 6.21 d (3.5)	118.6
18	1.35 s	16.0	1.34 s	16.0	1.34 s	15.6
19	1.60 s	15.7	1.61 s	15.6	1.61 s	15.3
20	1.85 s	19.6	1.72 s	19.9	1.48 s	18.6
21			_	169.1 ^a		
22			1.96 s	20.5		
OH	2.73 br d (4.8)					

^a Interchangeable.

Download English Version:

https://daneshyari.com/en/article/7827317

Download Persian Version:

https://daneshyari.com/article/7827317

Daneshyari.com