ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

One-pot synthesis of 2,3-disubstituted benzofurans from 2-chlorophenols using palladium-dihydroxyterphenylphosphine catalyst

Miyuki Yamaguchi, Hayato Ozawa, Haruka Katsumata, Tomoyo Akiyama, Kei Manabe*

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

ARTICLE INFO

Article history: Received 4 June 2018 Revised 30 June 2018 Accepted 5 July 2018 Available online 6 July 2018

Keywords: Benzofuran Palladium Ligand Sonogashira coupling Cyclization

ABSTRACT

2,3-Disubstituted benzofurans possessing 2-hydroxyphenyl moiety at the C-3 position were synthesized from readily available 2-chlorophenols and terminal alkynes by hydroxy-directed *ortho*-Sonogashira coupling and subsequent oxypalladation/reductive elimination, using Pd-dihydroxyterphenylphosphine catalyst. The catalyst accelerates not only the Sonogashira coupling but also the introduction of 2-hydroxyphenyl group at the C-3 position of benzofuran.

© 2018 Elsevier Ltd. All rights reserved.

The benzofuran framework is ubiquitously present in many natural products, biologically active compounds, and functionalized materials [1]. Among them, the 2,3-disubstituted benzofuran scaffold, often containing one or more hydroxy groups, has attracted considerable attention. To construct 2,3-disubstituted benzofurans, a number of synthetic methods have been developed [2]. However, direct approaches to obtain 2,3-disubstituted benzofurans possessing hydroxy groups are still limited [3], and efficient synthetic methods from readily available compounds are highly desired.

We have developed hydroxyterphenylphosphines 1 (Fig. 1) and applied them to Pd-catalyzed site-selective cross couplings [4]. In the reactions of dihalogenated phenols or anilines, the catalyst derived from Pd and 1 binds with the substrate via metal phenoxides or anilides, and site-selectively accelerates oxidative addition of the 2-halo group to Pd. We have also reported benzofuran synthesis from readily available 2-chlorophenols and terminal alkynes using the Pd-1b catalyst via hydroxy-directed *ortho*-Sonogashira coupling and subsequent cyclization (Scheme 1a) [5]. This catalytic system enabled the use of 2-chlorophenols, which are less reactive but more readily available than 2-bromo or 2-iodophenols. During this study, we observed the formation of a small amount

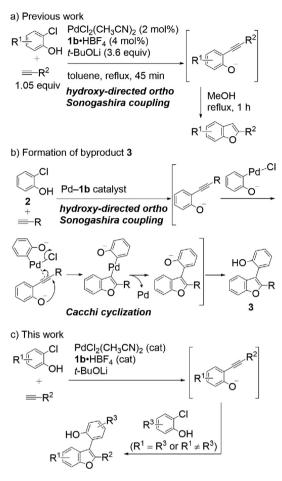

E-mail address: manabe@u-shizuoka-ken.ac.jp (K. Manabe).

Fig. 1. Hydroxyterphenylphosphines 1.

(~5% yield) of 2,3-disubstituted benzofuran 3 bearing 2-hydroxyphenyl moiety at the C-3 position as a byproduct (Scheme 1b), presumably via Sonogashira coupling followed by an oxypalladation/reductive elimination sequence. This type of sequence, which is known as Cacchi cyclization, is a powerful method to afford 2,3-disubstituted benzofurans; Pd-catalyzed annulations of 2-alkynylphenol with aryl iodides or bromides have been previously reported [6]. One-pot synthesis of 2,3-diarylated benzofurans from 2-iodophenol, terminal alkyne, and aryl iodide has been also conducted [7]. Therefore, we expected that the Pd-1b catalyst would enable one-pot synthesis of 2,3-disubstituted benzofurans from readily available 2-chlorophenols and terminal alkynes via hydroxy-directed ortho-Sonogashira coupling and oxypalladation/ reductive elimination (Scheme 1c). Herein, we report the one-pot synthesis of 2,3-disubstituted benzofurans possessing a hydroxyphenyl group from 2-chlorophenols using the Pd-1b catalyst.

^{*} Corresponding author.

Scheme 1. (a) Pd**-1b**-catalyzed benzofuran synthesis from chlorophenols (previous work). (b) Proposed mechanism of the formation of byproduct **3**. (c) 2,3-Disubstituted benzofuran synthesis from 2-chlorophenols (this work).

Table 1 Optimization of reaction conditions.

First, the reaction conditions were optimized using 4-ethynylanisole and 2-chlorophenol 2 (2 equiv) and as model substrates, t-BuOLi as base, and toluene as solvent (Table 1). When the reaction was conducted with 2 mol% of the catalyst derived from PdCl₂(CH₃CN)₂ and **1b**, the desired C-3-arylated benzofuran 3a was obtained in 23% yield, along with 31% of C-3-protonated benzofuran 4a and <16% of 2-alkynylphenol 5a (Entry 1). When 4 mol% of the catalyst was used, the yield of 3a was increased and that of 5a was decreased (Entry 2). When 6 mol% of the catalyst was used, 64% yield of 3a was obtained and formation of 4a was suppressed (Entry 3). Reaction using 8 mol% of the catalyst gave 3a in slightly lower yield (Entry 4). Use of other Pd sources resulted in moderate yield of the product (Entries 5 and 6). Thus, 6 mol% was identified as the optimum loading amount for the catalyst. Then, various solvents were screened using 6 mol% of the catalyst. For xylenes and mesitylene, the yield of 3a was decreased and that of 4a was increased (Entries 7 and 8). Use of heptane also resulted in similar yields (Entry 9). When THF was used, only a small amount of 3a was obtained (Entry 10). On the other hand, reaction using 1,4-dioxane proceeded smoothly to give 60% yield of 3a along with only 5% of 4a (Entry 11). 1,2-Dimethoxyethane solvent gave 3a in moderate yield (Entry 12), whereas DMF was not effective for the reaction (Entry 13). While both toluene and 1,4-dioxane gave almost the same yields of 3a, smaller amounts of byproducts formed in 1,4-dioxane enabled easier purification of 3a. Therefore, we decided to use 1,4-dioxane as the solvent for screening various ligands. Reaction with dihydroxyterphenylphosphine 1c, bearing a diphenylphosphino group afforded 3a in moderate yield (Entry 14). Use of monohydroxyterphenylphosphine 1a resulted in low yield of 3a (Entry 15). When XPhos was used [8], small amounts of 3a and 4a were obtained (Entry 16). Other ligands, including the hydroxy-group-containing ligand 6 and bidentate ligands, were found to be ineffective (Entries 17-22). Reaction using

Entry	Pd source (x mol%)	Ligand (2x mol%)	Solvent	Yield (%) ^a		
				3a	4 a	5a
1	$PdCl_2(CH_3CN)_2$ (2)	1b ·HBF ₄ (4)	toluene	23	31	<16
2	$PdCl_2(CH_3CN)_2$ (4)	1b HBF ₄ (8)	toluene	41	30	<4
3	$PdCl_2(CH_3CN)_2$ (6)	1b ·HBF ₄ (12)	toluene	64	13	2
4	$PdCl_2(CH_3CN)_2$ (8)	1b ·HBF ₄ (16)	toluene	56	10	2
5	$Pd(OAc)_2$ (6)	1b HBF ₄ (12)	toluene	51	22	4
6	$Pd_2(dba)_3(3)$	1b HBF ₄ (12)	toluene	49	25	3
7 ^b	$PdCl_2(CH_3CN)_2$ (6)	1b HBF ₄ (12)	xylenes	46	22	2
8 ^b	$PdCl_2(CH_3CN)_2$ (6)	1b HBF ₄ (12)	mesitylene	31	38	n.d. ^c
9	$PdCl_2(CH_3CN)_2$ (6)	1b HBF ₄ (12)	heptane	38	37	n.d. ^c
10	$PdCl_2(CH_3CN)_2$ (6)	1b ·HBF ₄ (12)	THF	<12	46	n.d. ^c
11	$PdCl_2(CH_3CN)_2$ (6)	1b HBF ₄ (12)	1,4-dioxane	60	5	n.d. ^c
12	$PdCl_2(CH_3CN)_2$ (6)	1b HBF ₄ (12)	1,2-dimethoxyethane	44	7	n.d. ^c
13	$PdCl_2(CH_3CN)_2$ (6)	1b HBF ₄ (12)	DMF	<4	18	n.d. ^c
14	$PdCl_2(CH_3CN)_2$ (6)	1c (12)	1,4-dioxane	37	4	n.d. ^c
15	$PdCl_2(CH_3CN)_2$ (6)	1a HBF ₄ (12)	1,4-dioxane	17	3	trace
16	$PdCl_2(CH_3CN)_2$ (6)	XPhos (12)	1,4-dioxane	<6	9	trace
17	$PdCl_2(CH_3CN)_2$ (6)	Cy-JohnPhos (12)	1,4-dioxane	trace	n.d. ^c	trace

Download English Version:

https://daneshyari.com/en/article/7828324

Download Persian Version:

https://daneshyari.com/article/7828324

<u>Daneshyari.com</u>