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a b s t r a c t

We discuss application of the isotope effect to establish the absolute vibrational numbering in electronic
states of diatomic molecules. This is illustrated by examples of states with potential energy curves of both
regular and irregular shape, with one or two potential minima. The minimum number of spectroscopic
data (either term values or spectral line positions) necessary to provide a unique numbering is consid-
ered. We show that at favourable conditions just four term energies (or spectral lines) in one isotopologue
and one term energy in the other suffice.

� 2018 Elsevier Inc. All rights reserved.

1. Introduction

It is well established that absolute vibrational numbering can be
determined from two sets of experimental term energies of the
same electronic state in two isotopologues [1]. The main idea
behind is that the electronic state in both molecules can be
described with the same potential energy curve, i.e. both data sets
have a common zero energy reference, usually denoted as Te or Y00.
Let the rovibrational levels of the isotopologue with reduced mass
l0 be expressed by a Dunham series

EvJ ¼
X
i;j

Y ijðv þ 1=2ÞiðJðJ þ 1ÞÞ j: ð1Þ

The absolute vibrational quantum number cannot be determined
solely from the observed energy pattern of a single isotopologue
since an expression similar to (1) can be found when v is substituted
by v þ Dv while the term energies remain unchanged. A change in v
will lead to a shift in the energy origin of the electronic state, Y00, as
well as change of other Dunham coefficients. The situation differs
when levels of an isotopologue with reduced mass l are also avail-
able. If small second-order effects [2] are neglected, these levels can
be scaled as [1,3]

Eiso
vJ ¼

X
i;j

Yijaiþ2jðv þ 1=2ÞiðJðJ þ 1ÞÞ j; ð2Þ

where the square root of the ratio of reduced masses is denoted as
a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

l0=l
p

. The common procedure at this point is to fit the exper-
imental data relating to two isotopologues with the same set of
Dunham coefficients. For the correct absolute vibrational number-
ing in both of them the root mean square error of the fit should
be similar to the uncertainty of the experimental data. Alterna-
tively, if the electronic state is represented directly by its potential
energy curve (and not the Dunham expansion) the same potential is
fitted to eigenenergies of both isotopologues. With the true vibra-
tional numbering the potential should reproduce correctly energies
of all the observed rovibrational levels.

It is a common belief among spectroscopists that for determina-
tion of vibrational numbering by the isotope effect the experimen-
tal data need to be sufficiently extensive to enable fitting a full set
of Dunham coefficients or a potential curve for a given state. The
goal of this paper is to point out and demonstrate that this is not
a prerequisite for application of the isotope shift method. In the fol-
lowing sections we derive formulas which allow to determine the
absolute vibrational numbering even from a very limited set of
experimental levels and discuss possible uncertainties of this
determination. Then we demonstrate usage of the method on
few typical examples for problems encountered in spectroscopic
research. One of them treats the case in which only high vibra-
tional levels of an investigated state are observed. Here the extrap-
olation to the energy origin can be associated with large
uncertainties and the method might be expected (incorrectly) to
fail. We also analyse applicability of the method to electronic states
with exotically shaped potential curves. In double-well potentials,
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for example, the term energies cannot be described by a single
Dunham series. Once again, many term energies may be experi-
mentally inaccessible (e.g. levels from one of the two potential
wells) and this may apparently cause the absolute vibrational
numbering for the rest of the experimental data to be uncertain
or arbitrary. However, we show that even in such cases it is possi-
ble to make use of the isotope effect.

2. Theory

Consider a smooth dependence of the energies of a diatomic
molecule with reduced mass l0 on the vibrational and rotational
quantum numbers EvJ ¼ Fðx; yÞ, where x ¼ ðv þ 0:5Þ and
y ¼ JðJ þ 1Þ (for electronic states other than R states

y ¼ JðJ þ 1Þ �K2 should be used instead). For the case of electronic
states with regular potential energy curves this function may be
the Dunham expansion, but other smooth functional forms are also
possible. Here v does not necessarily equal to the true vibrational
number. A similar functional dependence of the energy levels on
x may be achieved by adding an arbitrary number to v, i.e. by shift-
ing the function along the x axis. The same function Fðx; yÞ can then
be used for another isotopologue of the molecule with reduced
mass li if the variables are scaled as [3]

xi ¼ aðv þ 0:5Þ; ð3Þ

yi ¼ a2JðJ þ 1Þ; ð4Þ
where a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

l0=li

p
. Therefore the change of the reduced mass can

be treated as a change (usually small) of variables x and y,

xi ¼ xþ ða� 1Þðv þ 0:5Þ; ð5Þ

yi ¼ yþ ða2 � 1ÞJðJ þ 1Þ: ð6Þ
In regions where Fðx; yÞ varies slowly, one can use a Taylor ser-

ies to approximate the energies of the isotopologue

Eiso
vJ � Fðx;yÞþ@Fðx;yÞ

@x
ða�1Þðvþ0:5Þþ@Fðx;yÞ

@y
ða2�1ÞJðJþ1Þ: ð7Þ

The energy shift DEvJ ¼ Eiso
vJ � EvJ of rovibrational level ðv ; JÞ due

to the isotope effect is then

DEvJ � @Fðx; yÞ
@x

ða� 1Þðv þ 0:5Þ þ @Fðx; yÞ
@y

ða2 � 1ÞJðJ þ 1Þ: ð8Þ

One can see that the energy shift, which is an observable,
depends explicitly on the absolute vibrational quantum number.
This lifts the ambiguity in v since

v ¼ DEvJ � Fyða2 � 1ÞJðJ þ 1Þ
Fxða� 1Þ � 0:5; ð9Þ

henceforth we use symbols Fy ¼ @Fðx;yÞ
@y and Fx ¼ @Fðx;yÞ

@x . Given a pair of

levels Eiso
vJ and EvJ which are assumed to correspond to the same

quantum numbers (the vibrational number does not need to be
the correct one) the derivatives Fy and Fx are fixed because they
are calculated for these values of x and y which correspond to EvJ .
Actually the derivatives Fx and Fy are observables. For example Fx

is associated with the change of the term energy between two suc-
cessive vibrational levels and the absolute values of v are of no
importance. By assuming the scaling of the x variable through the
ratio of the reduced masses (3), however, the energy shift (8)
becomes v dependent and allows the absolute value of v to be
found. The derived expression may seem surprising since it tells
us that the absolute vibrational numbering of the experimental
term energies can be determined from the behaviour of Fðx; yÞ in
a narrow interval of its arguments. It is important only to assure

that in this narrow interval the function F can be expanded suffi-
ciently accurately in a Taylor series truncated after the first deriva-
tives. The behaviour of the function outside this region is not
important.

Our key point is that the determination of the true vibrational
numbering may be based on experimental term energies even
without assuming any particular functional form of the depen-
dence Ev ;J . For example, consider an observed vibrational progres-
sion in the main isotopologue which leads to a series of term
energies ðEnJ ; En;Jþ2Þ, where n is the relative vibrational label of
the successive doublet. The derivatives may be approximated as

Fx � Enþ1;J � En�1;J

2
; ð10Þ

Fy � En;Jþ2 � En;J

4J þ 6
: ð11Þ

Since these formulas contain only energy differences, combina-
tions of line frequencies may be used instead, e.g. in the presented
case of three P and one R line of a given vibrational progression. Of
course other combinations of experimental term energies are pos-
sible to evaluate Fx and Fy. Then, a single observation of term

energy Eiso
nJ in another isotopologue, which corresponds to the same

pair of quantum numbers as in EnJ , allows the determination of the
true vibrational quantum number from (9).

3. Uncertainty in v

Formula (9) allows us to set the lowest limit of an uncertainty
rv of the absolute vibrational numbering. If the correspondence

of Ev ;J and Eiso
vJ to the same vibrational quantum number is certain,

the main contribution to rv comes from DEvJ since both other
terms contain small factors of a2 � 1 or a� 1. Given an uncertainty
of the experimental term energies d, the uncertainty of the deter-
mined vibrational number would be

rv >

ffiffiffi
2

p
d

Fxða� 1Þ ; ð12Þ

here the uncertainties of Fx and Fy are neglected. For example, with
typical values of a ¼ 0:98 and Fx ¼ 50 cm�1 (Fx is of the order of the
local vibrational spacing) an experimental uncertainty of 0.005
cm�1 would set the lowest limit of rv to 0.007, and when d ¼ 0:1
cm�1;rv > 0:14, which is still much smaller than 1. The uncertainty
rv increases as a approaches 1. Another critical case is that of levels
close to the dissociation limit, where Fx is small. When Fx ¼ 6
cm�1 and a ¼ 0:99, for example, rv > 23:5d which exceeds 1 when
d ¼ 0:05 cm�1.

Formula (12) can be analysed also in a different way. With the
Fðx; yÞ function fixed by the experimental data from the main iso-
topologue, let us predict the isotope shift. With the true vibrational
number v t the result will be given by Eq. (8), whereas with a vibra-
tional number v ¼ v t þ 1 the shift will differ by Fxða� 1Þ. Obvi-
ously when the experimental uncertainty is larger than Fxða� 1Þ,
one cannot distinguish between the true and the wrong number-
ing. In the example considered in the previous paragraph, for
a ¼ 0:98 and Fx ¼ 50 cm�1, the uncertainty of the experimental
isotope shift would have to be larger than 1 cm�1 in order to make
a false assignment probable. But for Fx ¼ 6 cm�1 and a ¼ 0:99, an
uncertainty of 0.06 cm�1 would suffice to provide an ambiguous
assignment.

There are particular values of a for which it might be possible to
find several self-consistent vibrational numberings for a given set
of experimental data. For example, let v t denote the true vibra-
tional quantum number corresponding to a pair of levels EvJ and
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