#### Carbon 139 (2018) 189-194

Contents lists available at ScienceDirect

# Carbon

journal homepage: www.elsevier.com/locate/carbon

# Steam engraving optimization of graphitic carbon nitride with enhanced photocatalytic hydrogen evolution

Zhou Chen <sup>a</sup>, Xiang Yu <sup>a</sup>, Qiuhui Zhu <sup>b</sup>, Tingting Fan <sup>a</sup>, Qiuling Wu <sup>a</sup>, Lizhong Zhang <sup>b</sup>, Jianhui Li <sup>a</sup>, Weiping Fang <sup>a</sup>, Xiaodong Yi <sup>a, \*</sup>

 <sup>a</sup> National Engineering Laboratory for Green Chemical Productions of Alcohols-ethers-esters, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, PR China
<sup>b</sup> Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, PR China

# ARTICLE INFO

Article history: Received 5 April 2018 Received in revised form 30 May 2018 Accepted 22 June 2018 Available online 26 June 2018

Keywords: Photocatalysis Lattice defects g-C<sub>3</sub>N<sub>4</sub> Steam engraving Hydrogen evolution

## 1. Introduction

Environmental and energetic crisis have been gained considerable interdisciplinary attention recent years. Hydrogen is an ideal alternative energy source as substitute for fossil fuels and is currently considered to represent a clean and renewable future energy source. Solar-driven photochemical, in which water is splitted to produce hydrogen and oxygen using semiconductor photocatalyst, is a potential mean of directly obtaining renewable hydrogen [1]. Therefore, searching and optimizing highly efficient photocatalysts have invigorated growing awareness.

Since Wang et al. first reported the pioneering study that using graphitic carbon nitride  $(g-C_3N_4, CN)$  as photocatalyst to drive water splitting in 2009 [2], the graphite-like metal-free layered material with a visible-light driven bandgap (~2.67 eV) and proper band edges has emerged as a new class of photocatalyst [3,4], especially for water splitting under sunlight irradiation [5,6]. In fact, the photocatalytic activity of  $C_3N_4$  is mainly affected by its surface area and crystallinity. Higher surface area can provide more

# ABSTRACT

Graphitic carbon nitride (g- $C_3N_4$ ) has been extensively investigated as an efficient photocatalyst for water splitting. However, the intrinsic drawbacks of low surface area and poor charge separation efficiency seriously limit its practical applications in photocatalytic hydrogen evolution. Here, we designed an efficient nanorod- $C_3N_4$  photocatalyst by a versatile and scalable steam engraved protocol, which can produce higher surface area, enhanced crystallinity, reduced lattice defects, as well as meliorative energy band configuration. The engraved  $C_3N_4$  exhibited a remarkably longer lifetime of charge carriers and a much higher photocatalytic hydrogen production rate than the pristine  $C_3N_4$ . The specific activity of the engraved  $C_3N_4$  (87 µmol  $g^{-1}h^{-1}cm^{-2}_{BET}$ ) is 10.4 times higher than that of pristine  $C_3N_4$ .

© 2018 Elsevier Ltd. All rights reserved.

accessible sites for photochemical reactions, while the eliminating grain boundary defects on modified  $C_3N_4$  with high crystallinity could significantly decrease the photoexcited charge carrier recombination [7]. The crystallinity and nitrogen content of the carbon nitride was mainly dictated by the polymerization degree of the nitrogenous precursors. However, the bulk g-C<sub>3</sub>N<sub>4</sub> synthesized by calcining melamine at high-temperature usually shows a relatively low photocatalytic activity, which can be ascribed to the imperfect C<sub>3</sub>N<sub>4</sub> crystallinity forming by the incomplete deamination or polymerization of the precursor [8].

At present, many strategies, such as band gap engineering [9,10], surface carbon defects designing [11], heteroatoms introducing [12] [13], morphology controlling [14], semiconductors coupling [15], have been used to improve the photoactivity of  $C_3N_4$  to satisfy the needs of practical applications [16,17]. However, few studies have been performed focusing on the structure engineering that constructing higher surface area and simultaneously reducing the boundary defects of the carbon nitride. Recently, except from nonmetal [18] and metal dopant [19,20], a simple methanol reflux method was proposed to increase the active lattice face and eliminate surface defects [7]. In addition, 1,3,5-cyclohexanetriol was used to manipulate the structure engineering process suggested by Yu et al. [21]. However, the extra organic additives required and







<sup>\*</sup> Corresponding author. E-mail address: xdyi@xmu.edu.cn (X. Yi).

difficult handling conditions make each of these strategies more complex.

Herein, we designed a highly crystalline  $C_3N_4$  with higher surface area and reduced lattice defects by the steam engraved strategy. The pristine  $C_3N_4$  was separated with water by a crucible and further hydrothermal treatment under assigned temperature and period, as illustrated in Scheme 1. It is well known that the water is often used for exfoliation of  $C_3N_4$  into single or few layered  $C_3N_4$  under ultrasonic conditions for dozens of hours, and it could effectively engrave the  $C_3N_4$  to nanosheets structure with more surface sites exposed [22,23]. However, more surprisingly, in our case, the optimally treated  $C_3N_4$  exhibits rod morphology (labelled as Rod- $C_3N_4$ , while the pristine  $C_3N_4$  was labelled as Bulk- $C_3N_4$  for comparison) with enhanced surface area, reduced defects, meliorative energy band configuration.

## 2. Results and discussion

#### 2.1. Reconstructed texture

A reconstructed texture is observed by structure engineering process. Fig. 1a and b show the SEM images of pristine and treated  $C_3N_4$ . A massy morphology is observed for pristine  $C_3N_4$  (Fig. 1a and Fig. S1), while the engraved sample shows mainly in nanorods shape (Fig. 1b). When the engraved time is controlled up to 12 h, the Rod-C<sub>3</sub>N<sub>4</sub> are 0.5–1 µm in length and 100–150 nm in diameter (Fig. 1c). The HRTEM shows a distinct interplanar spacing with 0.209 nm marked in Fig. 1d corresponding to the (002) plane of Rod- $C_3N_4$ , which is lower than that of traditional  $C_3N_4$  (0.325 nm), indicating that the Rod-C<sub>3</sub>N<sub>4</sub> has higher crystallinity. Obviously, it can be seen that the water-engraved C<sub>3</sub>N<sub>4</sub> have a much higher surface area per unit mass. To confirm this hypothesis, the N<sub>2</sub> adsorption-desorption isotherms (Fig. 1e) are obtained for the two samples. The Brunauer-Emmett-Teller (BET) surface area of steamengraved  $C_3N_4$  is much higher than that of pristine  $C_3N_4$  (21.1 vs.  $8.3 \text{ m}^2 \text{ g}^{-1}$ ).

### 2.2. Enhanced crystallinity

XRD characterizations (Fig. 2a) were performed to observe the crystalline change before and after the steam treatment. Both  $C_3N_4$  have distinct diffraction peaks at  $27.4^{\circ}$ , which can be indexed as (002) diffraction for graphitic  $C_3N_4$  materials, representing interfacial stacking of g-C<sub>3</sub>N<sub>4</sub> sheets. The diffraction peak at 13.0° can be indexed as (100), representing in-plane packing. These two diffraction peaks show that  $C_3N_4$  still remained a layer structure after steam engraving. Compared with the pristine one, the (002) diffraction peak of Rod-C<sub>3</sub>N<sub>4</sub> shifts to higher angle after treatment,



Scheme 1. Illustration of the structure engineering process for constructing Rod-C<sub>3</sub>N<sub>4</sub>.

indicating a slight decrease in interlayer stacking distance and an increase of interlayer stacking density cause by the stream engraving. These results are highly agreed with previous studies [7,24]. In addition, the narrower and sharper peaks suggest that steam can react with pristine  $C_3N_4$  during the engraving process, causing the increase of ordered structures within the framework [8,25]. More surprisingly, a new peak at  $6.3^\circ$ , attributed to the crystal plane (001), is appeared after steam engraving. The diffraction peaks at about 11, 20–26 and 31° are observed for Rod- $C_3N_4$ , while no peak showed at this position for Bulk- $C_3N_4$ . According to the study by Bai et al. which show a simple methanol reflux method to construct a higher crystallinity  $C_3N_4$ , the diffraction peaks at about 11, 20–26 and 31° implied a high purity and crystallinity of Rod- $C_3N_4$  [7].

The chemical structure changes were analyzed by FTIR spectra, as presented in Fig. 2b. The basic atomic structure shows no obvious change since both samples exhibit the typical IR patterns of g-C<sub>3</sub>N<sub>4</sub> [5,25]. A broad peak at around 3000–3500 cm<sup>-1</sup> for the stretching vibrations of -NH<sub>x</sub> and -OH reveal the existence of primary/secondary amines and surface absorbed water. Meanwhile, the sharp absorption band centered at 810 cm<sup>-1</sup> originating from the breathing mode of triazine units indicates the existence of the basic melon units with -NH/-NH<sub>2</sub> groups [24,26]. Additionally, the bands observe in the region of  $900-1800 \text{ cm}^{-1}$  are the typical vibrations of C-N and C-N-C bonds, which associates with the skeletal stretching modes of aromatic rings [27]. Obviously, the peak at 810 cm<sup>-1</sup> shifts toward higher frequency after steam engraving, suggesting the enhanced crystallinity of Rod-C<sub>3</sub>N<sub>4</sub> [24]. Both XRD and IR results indicate that the intrinsic structure of C<sub>3</sub>N<sub>4</sub> is not changed by steam engraving, although a better crystallinity of C<sub>3</sub>N<sub>4</sub> was obtained.

Different treating time was also investigated to optimize the engraved conditions and the XRD, IR and SEM results are shown in Fig. S2-S4 in supporting information. It can be found that the crystallinity of C<sub>3</sub>N<sub>4</sub> increased with increased engraving time, as indicated by the enhancing intensity of the typical XRD peaks over time in Fig. S2. In addition, the peak at around 810  $cm^{-1}$  in the FTIR results gradually shift toward higher frequency (Fig. S3) as treated time increased, which also illustrating the increased crystallinity of  $C_3N_4$  [24]. It is interesting that the morphology becomes more pronounced and partially longer when the engraving time was lengthened to 24 h or 48 h (Fig. S4). We assume that the morphology alteration from an irregular C<sub>3</sub>N<sub>4</sub> to Rod-C<sub>3</sub>N<sub>4</sub> type and further to larger clavate-like structure may be due to an exfoliation and regrowth process, which could eliminate the lattice defect and enhance the surface area of pristine C<sub>3</sub>N<sub>4</sub>. No obvious structure transform from pristine to better crystallinity was occurred under 140 °C till 24 h steam engraving (Fig. S5), indicating that the degree of engraving is temperature and time dependent.

Since the photocatalysis reaction mainly occurs on the catalysts surface, it is essential to investigate the surface properties of C<sub>3</sub>N<sub>4</sub> before and after high temperature water treatment. In addition, it is crucial to illustrate the merit of this lattice engineering process. In XPS results, the survey spectra (Fig. 2c and d and Fig. S6) show the presence of C, N and O in both samples. The fine-scanned C 1s, N 1s and O 1s XPS spectra of the pristine and engraved C<sub>3</sub>N<sub>4</sub> exhibit a similar peak tendency. That is, the chemical composition and coordination of carbon and nitrogen in Rod-C<sub>3</sub>N<sub>4</sub> are retained during the steam-engraving process, which is highly agreed with the XRD and IR results. Compared to pristine  $C_3N_4$  (C/N = 0.52), the Rod-C<sub>3</sub>N<sub>4</sub> exhibits a lower C/N molar ratio of 0.44, as analyzed by elemental analysis (Table S1). For C1s spectra (Fig. 2c), the peaks at 284.6 and 287.4 eV arise from sp<sup>2</sup>-hybridized C-C bonds and sp<sup>2</sup>hybridized C in aromatic skeleton rings of C<sub>3</sub>N<sub>4</sub> (N-C=N), respectively [3,28]. Obviously, the C1s binding energy of N-C=N shifts Download English Version:

# https://daneshyari.com/en/article/7847162

Download Persian Version:

https://daneshyari.com/article/7847162

Daneshyari.com