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a b s t r a c t

The normal impingement of the rotational stagnation-point flow of Agrawal (1957) [8] on a sheet radially
stretching at non-dimensional stretch rate β is studied. A similarity reduction of the Navier–Stokes equations
yields an ordinary differential equationwhich is solved numerically over a range of β. A unique solution exists
at the turning point β¼ βt and dual solutions are found in the region β4βt where βt ¼ �0:657 is the
turning point in the parametric shear stress curve separating upper from lower branch solutions. An analysis
of solutions near the Agrawal point β¼ 0 is provided, and the large-β asymptotic behavior of solutions is
determined. Sample velocity profiles along both solution branches are presented. A linear temporal stability
analysis reveals that solutions along the upper branch are stable while those on the lower branch are unstable.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary-layer flow over a continuously stretching surface
is an often-encountered problem in engineering processes. There
are many applications in industries such as hot rolling, wire
drawing, and glass-fiber production to name but a few. For these
and other applications of continuously stretching surfaces, see
Refs. [1–3].

Axisymmetric stagnation point flow on a flat surface was first
studied by Homann [4]. Many variations on that problem have
been studied including the effects of wall stretching and suction
and blowing through a porous wall; see the review byWang [5]. Of
interest here is the paper by Mahapatra and Gupta [6] who studied
Homann stagnation-point flow on a radially stretching surface, a
procedure used for cooling a stretching surface. Wang [7] subse-
quently considered, inter alia, Homann stagnation-point flow on a
radially shrinking surface.

A new axisymmetric stagnation-point flow, also an exact
solution of the Navier–Stokes equations, was discovered by Agra-
wal [8]. In contrast to the irrotational outer flow of Homann [4],
this flow is rotational in the far field. Agrawal [8] derived his
solution using spherical coordinates. The nature of the flow
becomes most apparent when cylindrical coordinates (r, z) with
coordinate velocities (u, w) are used which furnish the pleasingly
simple solution

uðr; zÞ ¼ 2a r z; wðr; zÞ ¼ �2a z2 ð1:1Þ
in which the parameter a having units ðLTÞ�1 measures the
strength of the stagnation-point flow. It is clear that the
impermeable and no-slip conditions are satisfied at the wall z¼0.

This work continues a series of studies on applications of
Agrawal [8] stagnation-point flows in different situations. In the
first study, Weidman [9] analyzed Agrawal stagnation-point flow
impinging normal to a rotating plate, thus extending the work of
Hannah [10] who was the first to analyze Homann [4] stagnation-
point flow impinging on a rotating plate. In a second study
Weidman [11] considered Agrawal stagnation-point flow imping-
ing on a quiescent liquid surface, thus extending the work of Wang
[12] who did the same problem using the classic Homann
stagnation-point flow. In the present study, Agrawal stagnation-
point flow impinging normal to a radially stretching sheet is
investigated. Solutions to this problem depend on a single para-
meter β which measures the radial stretching ðβ40Þ or shrinking
ðβo0Þ rate of the plate. Dual solutions are found and these solu-
tions are tested for linear temporal stability.

The presentation is as follows. The problem is formulated in
Section 2. Analysis near the Agrawal solution and the large β
asymptotics are given in Section 3. The results of numerical cal-
culations of the governing equation presented in Section 4 reveal
dual solutions so the linear temporal stability of those solutions is
computed. The paper ends with a discussion and concluding
remarks in Section 5.

2. Problem formulation

The problem is formulated using cylindrical coordinates ðr;θ; zÞ
with corresponding velocities ðu; v;wÞ. The stretching surface is
located at z¼0 and the domain of flow is in the upper half plane.
The flow is axisymmetric ð∂=∂θ¼ 0Þ and has no swirl (v¼0). A
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reduction of the governing equations that gives rise to axisym-
metric rotational Agrawal [8] stagnation-point in the far field
above the surface, and satisfies the equation of continuity for
incompressible flow, has the form [9,11]

uðr;ηÞ ¼ a2=3ν1=3rF 0ðηÞ; wðηÞ ¼ �2a1=3ν2=3FðηÞ; η¼ a
ν

� �1=3
z

ð2:1Þ
where a prime denotes differentiation with respect to η and ν is
the kinematic viscosity of the fluid. Inserting this solution ansatz
into
the Navier–Stokes equation furnishes the boundary-value problem
for ηZ0 as

F‴þ2FF″�F 02 ¼ 0; Fð0Þ ¼ 0; F 0ð0Þ ¼ β; F″ð1Þ ¼ 2 ð2:2Þ
where β is a non-dimensional parameter measuring radial stretch
rate of the horizontal sheet.

The pressure field found by integrating the z-component of the
Navier–Stokes equation is

pðηÞ ¼ p0�2a2=3ρν4=3 F2ðηÞþF 0ðηÞ�β
� �

ð2:3Þ

in which p0 is the horizontally uniform stagnation pressure.
The radial wall shear stress, here denoted as τr, is given by

τr ¼ ρ ν
∂u
∂z

����
z ¼ 0

¼ ρ ν a r F″ð0Þ: ð2:4Þ

3. Analysis near the Agrawal solution and large β asymptotics

In this section the parametric solution behavior near β¼ 0
corresponding to the exact Agrawal solution f ðηÞ ¼ η2 is analyzed
and asymptotic results are provided for large values of β.

3.1. Analysis in the neighborhood of the Agrawal solution

The nature of the parametric solution curve near β¼ 0 may be
analyzed by introducing the perturbation expansion developed in
powers of β⪡1

FðηÞ ¼ ηþβ
2

� �2

�β2f 2ðηÞ ð3:1Þ

and its derivatives into Eq. (2.2). This yields, at O(β2), the problem

f ‴2þ2η2f ″2�4ηf 02þ4f 2 ¼ 0 ð3:2aÞ

f 2ð0Þ ¼ 1
4 ; ð3:2bÞ

f 02ð0Þ ¼ 0; ð3:2cÞ

f ″2ð1Þ ¼ 0: ð3:2dÞ
By the simple expedient of differentiation, one finds the separable
equation

f iv2 þ2η2f ‴2 ¼ 0 ð3:3Þ
two integrations of which yields

f ″2 ¼ A
Z 1

η
e�2

3 t3 dt ð3:4Þ

satisfying f ″2ð1Þ ¼ 0 and A is an integration constant. Since we
need f ″2ðηÞ only near η¼ 0, write

f ″2ðηÞ ¼ A I�
Z η

0
e�2

3 t3 dt
� �

ð3:5Þ

where the definite integral is given in terms of the Gamma func-
tion ΓðzÞ defined in Abramowitz and Stegun [13], namely

I¼
Z 1

0
e�2

3 t3 dt ¼ 3
2

� �1=3

Γ
4
3

� �
: ð3:6Þ

Now we expand the integrand of the definite integral and integrate
twice to obtain

f 2ðηÞ ¼ CþBηþA I
η2

2
�η3

6
þO η6

	 
� �
: ð3:7Þ

Boundary conditions (3.2b, c) require B¼0 and C ¼ 1=4.
The last arbitrary constant is determined by evaluating (3.2a) at

η¼ 0 in order to recover the constant sacrificed in the above dif-
ferentiation; this gives A¼1. Evaluation of (3.5) at η¼ 0, and use of
the relation F″ð0Þ ¼ 1�β2f ″2ð0Þ, yields the desired result

F″ð0Þ ¼ 2� Iβ2 ð3:8Þ
confirming the downward concavity of the numerically deter-
mined parametric curve F″ð0Þ at the Agrawal solution point β¼ 0.

3.2. Large β asymptotics

The goal in this section is to find a two-term large-β asymptotic
formula for the wall shear stress. This is accomplished by match-
ing inner and outer solutions.

Inspection of Eq. (2.2), with β⪢1, suggests the rescaling

η¼ β�αξ; FðηÞ ¼ βαf ðξÞ ð3:9Þ
which maintains the form of the differential equation in (2.2) and
yields

f ‴þ2ff ″� f 02 ¼ 0; f ð0Þ ¼ 0; f 0ð0Þ ¼ β1�2α
; f ″ð1Þ ¼ 2β�3α

ð3:10Þ
where a prime now denotes differentiation with respect to ξ. We
set α¼ 1=2 to obtain velocities of order unity, viz. f 0ð0Þ ¼ 1. This
suggests the first term in an expansion for FðηÞ given by

F ¼ β1=2f 0ðξÞþ⋯ ð3:11Þ
To ascertain the next term in the expansion we seek and outer
solution of (2.2) for η¼Oð1Þ, to find that

FðηÞ ¼ ðηþCðβÞÞ2 ð3:12Þ
where C is a constant to be determined. Matching to the leading-
order inner solution (3.11) leads to

CðβÞ ¼ f 01=21 β1=4 ð3:13Þ
where f 0-f 01 as ξ-1. Consequently, as η-0 we have the
development

F ¼ f 01β
1=2þ2f 01=21 β�1=4þ⋯ ð3:14Þ

which therefore requires that the expansion for FðηÞ be of the form

F ¼ β1=2f 0ðξÞþβ�1=4f 1ðξÞþ⋯ ð3:15Þ
Inserting (3.15) into boundary-value problem (2.2) gives

f ‴0þ2f 0f
″
0� f 020 ¼ 0; f 0ð0Þ ¼ 0; f 00ð0Þ ¼ 1; f ″0ð1Þ ¼ 0 ð3:16aÞ

f ‴1þ2ðf 0f ″1� f 00f
0
1þ f ″0f 1Þ ¼ 0; f 1ð0Þ ¼ 0; f 01ð0Þ ¼ 0; f ″1ð1Þ ¼ 2f 01=21 :

ð3:16bÞ
Then the leading behavior of the wall shear stress is given as

F″ð0Þ � f ″0ð0Þβ3=2þ f ″1ð0Þβ3=4þ⋯ ð3:17Þ
A standard shooting method was implemented to solve these

boundary-value problems using the ODEINT integration and
MNEWT Newton iteration codes provided in Press et al. [14].
Guesses on the wall shear stress parameters are made until the
far-field condition in Eq. (3.12) is satisfied. Integrations were car-
ried out changing the length of integration ηmax to ensure solution
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