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The study of the dynamic behavior of slender masonry structures is usually related to the preservation of
the historic heritage. This study, for bell towers and industrial masonry chimneys, is particularly relevant
in areas with an important seismic hazard. The analysis of the dynamic behavior of masonry structures is
particularly complex due to the multiple effects that can affect the variation of its main frequencies along
the seasons of the year: temperature and humidity. Moreover, these dynamic properties also vary con-
siderably in structures built in areas where land subsidence due to the variation of the phreatic level
along the year is particularly evident: the stiffness of the soil-structure interaction also varies. This paper
presents a study to evaluate the possibility of detecting the variation of groundwater level based on the
readings obtained using accelerometers in different positions on the structure. To do this a general case
study was considered: a 3D numerical model of a bellower. The variation of the phreatic level was
evaluated between 0 and —20 m, and 81 cases studies were developed modifying the rigidity of the soil-
structure interaction associated to a position of the phreatic level. To simulate the dispositions of
accelerometers on a real construction, 16 points of the numerical model were selected along the
structure to obtain modal displacements in two orthogonal directions. Through an adjustment by using
neural networks, a good correlation has been observed between the predicted position of the water table
and acceleration readings obtained from the numerical model. It is possible to conclude that with a

discrete register of accelerations on the tower it is possible to predict the water table depth.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the dynamic behavior of slender masonry struc-
tures has been extensively investigated by several authors [1-3].
Some studies are developed to make a dynamic identification and/
or characterization of the structural behavior of the structure [3].
In other cases the dynamic behavior has been analyzed to obtain
the structural response under different loads [2] such as earth-
quakes, or dynamic actions produced by the swinging of bells
[1-4] either to study its serviceability limit state (SLS) or its ulti-
mate limit state (ULS) [5].

Examples of these case studies may be the Osmancikli works
[6] that analyse the stiffness changes of a bell tower because of
some restoration activities or Saisi [7] works where the stiffness
changes of a tower are analyzed due to a seismic event. There are
very limited studies analyzing the variation of the dynamic
behavior of masonry structures depending on the humidity and
temperature, but is fully shown that when continuous records are
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performed during different seasons in the same structure, the
variation of the main frequencies can be detected [8].

Regarding the seismic behavior of these structures, a basic
parameter are their main frequencies and their possible interac-
tions with the frequency components of the seismic accelerogram
for the location of the structure. If these frequencies vary, the same
structure may have a different response to the same earthquake
depending on the season due to the changes of humidity and
temperature on the structure.

In some areas the phenomenon of subsidence is particularly
remarkable [9], and therefore the variation of the water table
under construction along the different seasons. This phenomenon
generates some changes on the stiffness of the soil and therefore
the variation of the stiffness of the soil-structure interaction,
thereby producing ultimately a variation on the main frequencies
of the structure and ultimately varying the response of this
structure against the possible seismic loads. Ivorra [10] studied the
influence of these rigidity changes in the soil-structure interaction
in dynamic response of a bell tower with forces generated by the
bell ringing.

The aim of this paper is to present a methodology based on
neural networks to determine the depth of the water table under a
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slender masonry structure from the ambient vibration accelera-
tions obtained at different points on the structure. In an indirect
way, through the registration of accelerations at known points of
structure, their main frequencies influenced by the rigidity of the
soil-structure interface and corresponding mode shapes are
determined. In this paper, the methodology will be validated using
results from numerical models.

The changes on the main frequencies of a structure can be
produced by temperature and most important for masonry
structures, the humidity level. Some authors have detected chan-
ges along the winter-spring-summer-autumn seasons due to
temperature and humidity changes. In this theoretical paper, we
only study the effect of the table level because we only put
accelerometer sensors, in the case of humidity changes and tem-
perature changes its necessary put more specific sensors on the
structure and introduce the results of these sensors on the neural
network procedure.

There are diverse neural network applications to masonry
structures [11]. However, as background of its dynamic applica-
tions, can be cited the work of Facchini [12] in which the neural
networks are used for the modal identification of structural sys-
tems, presenting satisfactory results. In this case, the progressive
stiffness change of the structure is based on the generation of a
known damage in some parts of a steel structure. In some selected
point of this structure, ambient vibrations accelerations are
recorded and these movements are some of the parameters used
for training and validate the network.

Neural networks have been established as an increasingly used
tool in a variety of fields such as adjustment functions, pattern
recognition or data clustering, among others. The basic feature of
these networks is their ability to learn to assess the participation
of the input variables at the output from a set of input-output
training. Therefore they are able to supply a vector of output from
a not present in the training data entry, which is very useful in
adjusting functions with multiple input variables, whose analytical
expression is unknown. That is, we only need one set of input-
output data known to train the network, which functions as a
black box of adjustable parameters automatically.
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Fig. 1 shows a typical neural network comprising an input layer
of two neurons (input vector components), two hidden layers and
an output layer of two neurons (output vector components).

The mathematical process for an individual neuron, for exam-
ple N4 in Fig. 1, is: each input from a neuron of the previous layer
(included the bias signal) that is multiplied by a weight M and the
sum of this product is computed. This summatory is transformed
using a non-linear function activation o, and the resulting output
is passed to all neurons of the next layer. This process is repeated
on all neurons in the network. The output of this neurone N4 is
shown in Eq. (1).

X4 = 0(X W +xaWh + bswh) = 6 Wi +x,W5 +b3) 1)

In compact form, the functionality of an active (no bias) neuron
in the hidden layer (and the output if the same activation function
is used), can be written as Eq. (2).

n—1 .
X = a({Z x,-w{:+b{1> )

1=m

where

x;: result of neurone j of layer k

o(x): activation function

m : number of the first neurone in the previous layer

n : number of the first neurone in the previous layer (BIAS)
x;: result of neurone i of layer k-1

wh: synaptic weight of i, j connection

bl,: connection weight BIAS

During learning, the synaptic weights are adjusted auto-
matically. While the number of neurons in the input and output
layers is given by the dimensions of the corresponding vectors, the
number of hidden layers and neurons in each of these layers
depends on the characteristics of the particular problem to be
solved, there being no established rule for choosing them. Most
problems can be solved with one or two hidden layers and num-
ber of neurons involved must be determined by tests with differ-
ent network architectures.
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Fig. 1. A feedforward neural network with two hidden layers. N; N,: input-neurons; N3, N; Nyq: Bias-neurons; N4, N5, Ng: first hidden layer neurons; Ng, Ng, Nyo: second

hidden layer neurons; Ny, Ni3: output-neurons.
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