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We define a non-iterative transformation method for Blasius equation with moving wall or surface
gasification. The defined method allows us to deal with classes of problems in boundary layer theory
that, depending on a parameter, admit multiple or no solutions. This approach is particularly convenient
when the main interest is on the behaviour of the considered models with respect to the involved
parameter. The obtained numerical results are found to be in good agreement with those available in the
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1. Introduction

The problem of determining the steady two-dimensional
motion of a fluid past a flat plate placed edge-ways to the stream
was formulated in general terms, according to the boundary layer
theory, by Prandtl [1], and was investigated in detail by Blasius [2].
The engineering interest was to calculate the shear at the plate
(skin friction), which leads to the determination of the viscous
drag on the plate, see for instance Schlichting [3].

The celebrated Blasius problem is given by

&f o df
T’P+PfW:O
d d
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where f and # are suitable similarity variables and in the literature
we can find either P=1/2 or P=1. This is a boundary value
problem (BVP) defined on the semi-infinite interval [0, oo). Accord-
ing to Weyl [4], the unique solution of (1) has a positive second
order derivative, which is monotone decreasing on [0,oc0) and
approaches to zero as 7 goes to infinity. The governing differential
equation and the two boundary conditions at #=0 in (1) are
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invariant with respect to the scaling group of transformations
nr=2a"% fr=2f 2

where « is a non-zero constant: Topfer used a@ =1/3, see [5], but we
have always put a=1 in order to simplify the analysis. The mentioned
invariance property has both analytical and numerical interest. From a
numerical viewpoint a non-iterative transformation method (ITM)
reducing the solution of (1) to the solution of a related initial value
problem (IVP) was defined by Toépfer [5]. Owing to that transforma-
tion, a simple existence and uniqueness Theorem was given by Serrin
|6] as reported by Meyer [7, pp. 104-105] or Hastings and McLeod |8,
pp. 151-153]. Let us note here that the mentioned invariance property
is essential to the error analysis of the truncated boundary solution
due to Rubel [9], see Fazio [10].

Our main interest here is to extend Topfer's method to classes
of problems in boundary layer theory involving a physical para-
meter. This kind of extension was considered first by Na [11], see
also Na [12, Chapters 8 and 9]. The application of a non-ITM to the
Blasius equation with slip boundary condition, arising within the
study of gas and liquid flows at the micro-scale regime [13,14], was
considered already in [15]. Here we define a non-ITM for Blasius
equation with moving wall considered by Ishak et al. [16] or
surface gasification studied by Emmons [17] and recently by Lu
and Law [18]. In particular, we find a way to solve non-iteratively
the Sakiadis problem [19,20]. For the solution of the Sakiadis
problem by an ITM see Fazio [21]. The defined method allows us to
deal with classes of problems in boundary layer theory that,
depending on a parameter, admit multiple or no solutions. This
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approach is particularly convenient when the main interest is on
the behaviour of the considered models with respect to the
involved parameter.

2. Moving wall

According to Ishak et al. [16] the differential problem governing
a moving wall, with suitable boundary conditions, is given by

&f 1.d°f
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where P is a non-dimensional parameter given by the ratio of the
wall to the flow velocities. Blasius problem (1) is recovered from
(3) by setting P=0.

2.1. The non-ITM

The applicability of a non-ITM to the Blasius problem (1) is a
consequence of both: the invariance of the governing differential
equation and the two boundary conditions at #=0, and the non-
invariance of the asymptotic boundary condition under the scaling
transformation (2). In order to apply a non-ITM to the BVP (3) we
consider P as a parameter involved in the scaling invariance, i.e.,
we define the extended scaling group

=i, n*=1"'n, P*=1°P. 4)
Let us notice that, due to the given second boundary condition at
17=0 and the asymptotic boundary condition in (3), P has to be
transformed under the scaling group (4) with the same law of
(df /dn)(n). By setting a value of P*, we can integrate the Blasius
equation in (3) written in the star variables on [0, 7% ], where 7%, is
a suitable truncated boundary, with initial conditions

de*
d;/l*z
in order to compute an approximation (df* /di*)(%.) for (df* /di*)(c0)
and the corresponding value of A according to the equation:

Fo=0. Lo=p

i ©==+1, (5)
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Once the value of A has been computed, by Eq. (6), we can find the
missed initial conditions

d&f o _g-2pe Lo 30
0= =27
Moreover, the numerical solution of the original BVP (3) can be
computed by rescaling the solution of the IVP. In this way we get
the solution of a given BVP by solving a related IVP.

We remark here that the plus (for P<0.5) or minus (when
P>0.5) sign must be used for the second derivative in (5).
Moreover, the computation of a value at infinity is unsuitable
from a numerical viewpoint and therefore we use a truncated
boundary #* instead of infinity. For the application of the method
defined above, depending on the behaviour of the numerical
solution, we used 7% =10 or 7% =15.

In Table 1 we list sample numerical results obtained by the
non-ITM for several values of P*. Here the D notation indicates that
these results were computed in double precision. As mentioned
before, the case P* =P =0 is the Blasius problem (1). In this case
our non-ITM becomes the original method defined by Topfer [5].
For the Blasius problem, the obtained skin friction coefficient is in
good agreement with the values available in the literature, see for
instance the value 0.332057336215 computed by Fazio [22] or the

(0). )

value 0.33205733621519630, believed to be correct to all the
sixteen decimal places, reported by Boyd [23]. The values shown
in the last line of Table 1 are related to the Sakiadis problem
[19,20] and were found by a few trial and miss attempts. For this
problem, the obtained skin friction coefficient is in good agree-
ment with the values reported by other authors, e.g., —0.44375
Sakiadis [19], —0.4438 by Ishak et al. [16], —0.44374733 by Cortell
[24] or —0.443806 by Fazio [21].

Fig. 1 shows the solution of the Sakiadis problem, describing
the behaviour of a boundary layer flow due to a moving flat
surface immersed in an otherwise quiescent fluid, corresponding
to P=1. Actually, this is a case of practical interest if we are
considering the plate as an idealisation of an airplane wing. Let us
notice here that by rescaling we get % <#,..

Table 1
Moving wall boundary condition: non-ITM numerical results.

d’r* p df* d’f P
d'7*2 (V)] W (00) W (V)]
1 —500 1.55D04 5.46D—-07 —0.033393
—100 2.34D03 9.42D—-06 —0.044591
-5 36.325698 0.005704 —0.159613
-15 4.368544 0.205830 —0.522913
—-125 3.529165 0.290627 —0.548447
-1 2.917762 0.376537 —0.521441
-0.75 2.503099 0.430814 —0.427814
-0.5 2.250439 0.431797 —0.285643
0 2.085393 0.332061 0
1 2.440648 0.156689 0.290643
5 5.771518 0.028287 0.464187
100 1.00D02 3.53D-04 0.499557
500 5.00D02 3.16D-05 0.499960
-1 100 99.822681 —3.54D-04 0.500444
10 9.433763 —0.011673 0.514568
5 4182424 —0.035939 0.544519
2 0.528464 —0.248722 0.790994
1.719 —4.73D-05 —0.443715 1.000027
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Fig. 1. Numerical results of the non-ITM. Top frame: solution of the IVP; bottom
frame: solution of the Sakiadis problem found after rescaling.
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