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A B S T R A C T

During service and transportation, photovoltaic modules are subjected to dynamic excitation, too. From the
viewpoint of structural engineering, natural frequencies of such structures should be outside of the stimulus
spectrum. Knowing the location of the natural frequencies is therefore essential. The present contribution is the
continuation of a recently published paper, where the considerations were stipulated on statics, while directions
to optimal geometric and material parameters were revealed. In addition, we enlarge our framework and in-
vestigate the eigenbehaviour of different layouts. Thereby, we make use of an efficient and effective approach to
computational solutions based on the extended layerwise theory. The results presented here constitute char-
acteristic indexes useful in conceptual and design phase for dimensioning and material selection of photovoltaic
modules.

1. Introduction

1.1. Motivation

The durability and operational reliability of photovoltaic modules
are essentially influenced by the mechanical design of components in-
volved. Restricting to terrestrial photovoltaic modules, the components
available on the market are subject to a large variability of mechanical
properties and geometric dimensions. As visualised in Fig. 1, this affects
mainly the front and back cover =( skin layers) as well as the core layer.
It is possible to extract significant ratios of these constituents, which we
will directly recapitulate from [1]. Subsequent ranges for geometric
ratios
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and the following range for the shear modulus ratio are known.
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Herein, we consider isotropic materials, so =
+

G E
ν2(1 ) holds true where

E is YOUNG's modulus and ν is POISSON's ratio. Furthermore, we introduce
the mass density ratio with subsequent range assumed.
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The conscious choice of these parameters is directly related to
stiffness, strength, and reliability of photovoltaic modules.

In a preceding publication [1], we have concentrated on the static
deflection behaviour of such structures. In the present contribution, we
focus on the eigenbehaviour solely, since the location of natural fre-
quencies is crucial in the context of reliability as reported in [2]. Ex-
perimental analysis on structural dynamics of photovoltaic modules can
be found in [3–7]. Since experiments are usually elaborate and ex-
pensive, numerical estimations are beneficial.

Due to the slenderness of photovoltaic modules, cf. Eq. (3)
≈ ⪢L L H( 1 2 ), it is reasonable to make use of the mechanics of thin-

walled structures, whereby individual layers should be considered. The
different approaches are discussed in [8], while it turns out that the
extended layerwise theory (XLWT) originally proposed in [9] has the
highest potential to application. Within this approach, a homogeneity
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postulate is introduced for the core layer, what enables to neglect the
solar cells and to reduce the mechanics to a three-layered composite.
Thereby, the low transverse shear stiffness of the core layer is taken into
account. The concept is approved in [10]. A numerical solution strategy
by using the Finite Element Method is introduced in [11], while ex-
cessive applications can be found in [12]. In the present context, the
balance equations are enriched by the terms of inertia and the nu-
merical solution strategy is expanded correspondingly to solve eigen-
problems. However, the variation of geometric dimensions and material
parameters is still in the foreground to reveal directions to optima with
respect to above introduced ratios.

1.2. Frame of Reference

The XLWT is based on the theory of elastic surfaces. Here, we reduce
our concern to coplanarity of all material points, i.e. initially uncurved
surfaces. These surfaces comprise five degrees of freedom: two in-plane
translational = +a e ea a( 1 1 2 2), one out-of-plane translational (w), and
two out-of-plane rotational = +φ e eφ φ( )1 1 2 2 . In the sequel, we make
use of the direct tensor notation for a rational description, whereby
tensors of first, second, and fourth order are written as b, B, and � .
Furthermore, ×, ·, :, and ⊗ represent the cross product, the single
contraction, the double contraction, and the dyadic product. is the
nabla operator,b is the gradient of b, and is the symmetric part of this
gradient. Moreover, B· is the divergence of B. In the case of a geo-
metrically linear theory, the deformation measures are thus =G asym ,

=K φsym , and = +γ φw . The conjugate stress measures derive
from a potential G K γW ( , , ).
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Therein, N is the membrane force tensor, L the polar tensor of mo-
ments, and q denotes the transverse shear force vector. Since we restrict
ourselves to symmetry in transverse direction concerning the co-
ordinate origin, the elastic potential of the uncoupled but superposed
surface continuum can be derived as follows, whereby we use a de-
scription adapted from [13].

� �= + +G K γ G G K K γ Z γW ( , , ) 1
2

[ : : : : · · ] (7)

The membrane, bending, and shear stiffnesses � , � , and Z are given in
[12] for isotropic materials. The stress measures derived fulfil the fol-
lowing equations of motion.
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The variable p denotes the out-of-plane load, while s denotes the in-
plane force field, and m contains the out-of-plane moment field at the
surface, cf. [12]. □ =

∂□

∂
˙

t denotes the derivative of the variable □ w.r.t.
time t. Therein, □ is used as placeholder for tensors of arbitrary order.
The right-hand side of the Eqs. (8) and (9) contain two tensors of in-
ertia, defined as follows.
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Thereby, JT is the tensor of translational inertia while JR is the tensor of
rotational inertia. P is the unit tensor of the surface. Furthermore,

∫=⋆ρ ρ Xdh 3 is the mass density of the surface. Herein, ρ is the mass
density of the material considered, while X3 is running variable along
thickness h.

Above listed equations must be considered for every layer sepa-
rately, thus for skin and core layers. Thereby, kinematic constraints are
introduced, cf. [9], e.g. the equality of all layer deflections at a material
point. We restrict our concern to virgin materials without any im-
perfection at interfaces. In-plane displacements and rotations are di-
rectly coupled at these interfaces. Our description incorporates the
straight line hypothesis layerwise, cf. [14]. A comprehensive descrip-
tion of XLWT theory can be found in [15]. The specific extensions of
this theoretical framework as well as the numerical implementation will
be topic of a forthcoming paper.

However, all subsequent calculations were performed with the
commercial finite element code ABAQUS using a user-defined element
created within the user subroutine UEL, cf. [11,15]. This framework
was enlarged by incorporating inertia to enable the analyses of the ei-
genbehaviour. Furthermore, a parametrisation was carried out within
our subroutine to allow for a simple implementation of geometry and
material variations.

2. Parameter study

To attain information about the behaviour at varying structural
parameters, the study is confined to the first eigenmode and therefore
the first natural frequency, see Fig. 2 (bottom left). The basis for the
present study is a photovoltaic module, whose geometric and material
data is specified in Fig. 2 (both boxes top right). Since we restrict
ourselves to a symmetric composite, ≡h ht b, ≡E Et b, and ≡ν νt b hold
true. The materials do not have any directional dependence. Con-
sidering the material data given, κ is the shear correction factor which
is artificially introduced in Z , considering the layerwise parabolic
gradient of q along X3. A moment-free support is used at all edges. The
whole structure is unloaded. Details of the boundary conditions are
given in Fig. 2 (bottom right). For structural analysis, the finite element
developed in [11] is used for discretisation. It is a quadrilateral element
with quadratic shape functions of SERENDIPITY type incorporating all
layers. The nodes comprise enriched degrees of freedom to consider
rotations and translations of the whole composite structure. A constant
element edge of = ∀ =h α10 mm {1, 2}α

e is used at all subsequent
studies to gain convergence and to sufficiently resolve the eigenmode.
The discretisation strategy is visualised in Fig. 2 (top left) For com-
parison, identified ratios of our starting structure are: =TR 0.15625,

=LR 0.5, = × −TLR 9.136 10 3, = × −GR 9.978 10 5, and =MDR 0.384.
However, geometric and material parameters stated in Fig. 2 are varied
systematically to analyse the mechanical eigenbehaviour for all possible
values of these ratios, at least up to the bounds reported in Eqs. (1)–(5).
The first natural frequency f1 is used as evaluation criterion. Following
dependencies can be expressed concerning geometric dimensions and
material properties.

Fig. 1. Photovoltaic module composition for global structural analysis [1].
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