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a b s t r a c t

Cluster synchronization and rhythm dynamics are studied for a complex neuronal network with the small
world structure connected by chemical synapses. Cluster synchronization is considered as that in-phase
burst synchronization occurs inside each group of the network but diversity may take place among
different groups. It is found that both one-cluster and multi-cluster synchronization may exist for
chemically excitatory coupled neuronal networks, however, only multi-cluster synchronization can be
achieved for chemically inhibitory coupled neuronal networks. The rhythm dynamics of bursting neurons
can be described by a quantitative characteristic, the width factor. We also study the effects of coupling
schemes, the intrinsic property of neurons and the network topology on the rhythm dynamics of the small
world neuronal network. It is shown that the short bursting type is robust with respect to the coupling
strength and the coupling scheme. As for the network topology, more links can only change the type of
long bursting neurons, and short bursting neurons are also robust to the link numbers.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There are about 1010 neurons with 1014 links between them
in a human brain forming a complex network [1]. An emergent
property of this dynamical system is that a set of neurons
synchronize and fire impulses simultaneously. Neuronal synchro-
nization plays a vital role in mechanisms of information processing
within different brain area [2–4]. It is also suggested that syn-
chronization is the origin of neurological diseases such as epilepsy
[5] and Parkinson's disease [6]. As for neural networks, neuronal
synchronization results from the interplay between the intrinsic
properties of individual neurons, the properties of synaptic cou-
pling, as well as the network topology. Each of them may play an
important role in shaping the emergent synchronous behaviors
and it is important to determine the precise role each factor plays.

Diverse electrical spike activities of neurons can be observed in
experiments and model simulations. These activities may be in the
state of tonic spiking, or be organized in bursts in which time
intervals with high spiking rates are separated by others with
much lower spiking rates. In developing mathematical measures
for neuronal activities, a key issue is how to characterize the
bursting patterns. The width factor is introduced in Ref. [7] to

describe the bursting dynamics and classify the bursting patterns
into two types, that is, long and short burstings.

Recently, cluster synchronization has attracted increasing atten-
tion due to its applications in biological science and communication
engineering [8–12]. Cluster synchronization is considered to be
more momentous than complete synchronization in brain science
[13]. As a particular synchronization phenomenon, cluster synchro-
nization requires that synchronization occurs inside each group, but
there is no synchronization among the different groups. Nowadays,
this phenomenon is mainly investigated when complete synchro-
nization occurs in each cluster of the network. However, for
neuronal networks, a more important synchronization state is burst
synchronization, which means that neurons emit bursts with fixed
burst phase differences. Hence, this work concerns with cluster
synchronization when in-phase burst synchronization is realized in
each cluster but the burst phases may be different among clusters.

Watts and Strogatz showed that many complex networks in
real world have small-world property with high degrees of
clustering in their famous paper [14]. Although neurons are
sparsely connected in brain, they are within only a few synaptic
steps from all other neurons and their underlying network has
small-world property [1]. Studies of neuronal firing activities are
based on neuronal models which can be divided into two
categories: ordinary differential equations based models and
map-based ones [15]. There have been many differential equations
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based models, especially the famous Hodgkin–Huxley neuron
model. There also are a number of map-based neuron models,
including the Rulkov model [16]. Without being biophysically
meaningful, the Rulkov model not only has been shown to be
capable of producing many of the observed neuronal behaviors
such as tonic spiking, tonic bursting and chaotic firing as the
Hodgkin–Huxley-type models but also can simplify analysis and
speed up computations greatly. Therefore, one could have a great
advantage in understanding the collective behavior of real world
neuronal populations by studying the networks of Rulkov discrete-
time systems.

Bursting is important since it is considered to enhance the
reliability of communications between neurons by facilitating
transmitter release [17,18]. The study of bursting rhythm of
neuronal networks has attracted more and more interests in
recent years [7,19–24,29,31]. Ref. [23] discussed how synchroniza-
tion in a group of chaotically bursting nervous cells can lead to the
onset of regular bursting by using a two-dimensional map of
chaotic neurons. Batista et al. [22,25] investigated the burst
synchronization in a scale-free and non-locally coupled network,
in particular the dependence of chaotic phase synchronization on
the coupling properties of network as well as the synchronization
under an externally applied time-periodic signal.

Spatiotemporal order, that is, temporal coherence and spatial
synchronization, is one of the most attractive phenomena of
coupled non-linear elements [26–30]. Ordering spatiotemporal
chaos of small world neural networks with electrical synaptic
coupling have been studied extensively [26,28–31] in recent years.
The above results, based on bursting neurons (chaotic or non-
chaotic) as basic units of networks, presented some quantitative
characteristics to evaluate the spatiotemporal order degree of
neuronal networks. However, the rhythm dynamics of complex
networks has not been considered completely.

In this work, we mainly investigate the effects of the rhythm
properties and the coupling schemes (that is, excitatory and inhibi-
tory) on cluster synchronization and rhythm dynamics of complex
neuronal networks. An outline of this paper is given as follows. The
Rulkov map-based neuron model and a complex neuronal network
with chemical coupling and small world structure are introduced in
Section 2. A basic characteristic of burst dynamics is also presented.
The cluster synchronization of the complex neuronal networks with
chemically excitatory and inhibitory coupling is studied in Section 3.
The rhythm dynamics of the complex neuronal networks is pre-
sented in Section 4. Finally, conclusions are given in Section 5.

2. Model description

2.1. Rulkov neuron model

Bursting, in which rapid spiking states are followed by quies-
cene, is a general phenomenon of the activation patterns of
neurons in the central nervous system and is thought to be
important in the operation of robust central pattern generators
[32,33], the transmission of neural codes [34] and some neuro-
pathologies, such as epilepsy.

The models of bursting neurons always present multiple time
scales, that is, fast variables relating to the action-potential firing
(spiking) and slow processes modulating the fast ones to generate
bursting.

Now consider the neuron model proposed by Rulkov [16],
which is a two-dimensional discrete time map system with fast
and slow time scales and spiking–bursting behaviors. The Rulkov
model is given as follows:

xnþ1 ¼ Fαðxn; ynÞ

ynþ1 ¼ yn�μðxnþ1Þþμσ ð1Þ
where x represents the transmembrane voltage of the neuron and
y the slow gating process. The difference between the time scales
of the two subsystems is determined by a sufficiently small value
of the parameter μ with 0oμ{1. The parameter σ describes the
dc current injected into the cell. The non-linear function Fαðx; yÞ is
responsible for the generation and reset of spikes, and is given by

Fαðx; yÞ ¼

α
1�x

þy if xo0;

αþy if 0rxoαþy;

�1 if xZαþy:

8>><
>>:

Depending on the values of the parameters α and σ, the model of
Rulkov's map can reproduce a variety of neuronal spiking–bursting
activities. In this study, we fix α¼ 5:0, μ¼ 0:001 and control the
value of σ to generate various regular neuronal firing patterns.

2.2. Rhythm dynamics of a single neuron

Some classification of bursting behaviors of single-neuron
models have been developed by investigating the bifurcation
structures of the fast and slow subsystems. However, it is also
possible for bursting to arise through interactions between differ-
ent parts inside a neuron or different clusters of neurons in a
network. So further studies on bursting behavior both at the
cellular and the network levels are interesting and necessary.

A characteristic quantity, which is called the width factor, is
introduced to describe the bursting rhythm dynamics of a single
neuron. It is defined as the average ratio between the duration of a
burst Tb and the subsequent period of refractory time Tr, and
denoted by f ¼ Tb=Tr . If the width factor f ¼ Tb=Tr41, this type of
bursts is called long ones. Otherwise, the type of bursts with the
width factor f ¼ Tb=Tro1 is called short ones. By using directly
calculation, we obtain that the width factor is larger than 1 after
σ ¼ 0:14 as shown in Fig. 1(a), which implies that the neuron
transits from short bursting to long bursting at this critical value
σ ¼ 0:14. Therefore, with the external input increasing, the firing
pattern of the neuron transits from short bursting to long bursting.
We give the illustration of these two types of bursting in Fig. 1(b).

2.3. The small world complex neuronal network model with
chemical synapses

The complex neuronal network is consisted of neurons
described by the following maps:

xi;nþ1 ¼ Fαðxi;n; yi;nþβi;nÞ; ð2Þ

yi;nþ1 ¼ yi;n�μðxi;nþ1Þþμσi;

where the indices i¼ 1;2;…;M and n¼ 1;2;…;N, which represent
the i-th neuron and the discrete time, respectively. The coupling
among neurons is provided by the currents toward the i-th neuron
from others with βi;n as the coupling term. In what follows, the
coupling is modeled by

βi;n ¼ �gcaijHðxj;n�θÞðxi;n�νÞ; ia j: ð3Þ

through reciprocal chemical synapse that follows the fast thresh-
old modulation (FTM) model [35], where the summation abbre-
viation rule for the index j is used. gc is the coupling strength
mimicking the maximal conductance and Hð�Þ is the Heaviside step
function with HðxÞ ¼ 1 if x40 and HðxÞ ¼ 0 if xr0. The parameter
θ is the presynaptic threshold for chemical synaptic interaction.
Only when the voltage of the presynaptic neuron is above θ does
the postsynaptic neuron receive an external input. We choose
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