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a b s t r a c t

The main conditions for the thermodynamic potential for multiphase GinzburgeLandau theory are
formulated for temperature-induced phase transformations (PTs). Theory, which satisfies all these
conditions for n� phase material, is developed. The key point is a new penalizing term in the local energy
that allows controlling absence or presence and the extent of the presence of the third phase within the
interface between two other phases. A finite-element method is applied for studying PT between b and
d phases of HMX energetic crystal via intermediate melting more than 100�C belowmelting temperature.
Depending on material parameters (ratio of the width and energy of the solidesolid (SS) to solidemelt
interface and the magnitude of the penalizing term), there are either two (meta)stable stationary
interfacial nanostructures, corresponding to slightly and strongly disordered interfaces (in the limits,
pure SS interface or complete melt within SS interface), or these nanostructures coincide. A parametric
study of these nanostructures is presented. The developed requirements and approach are applicable to
various PTs between multiple solid and liquid phases and can be elaborated for PTs induced by me-
chanical and electromagnetic fields, diffusive PTs, and the evolution of multi-grain and multi-twin
microstructures.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

While in this paper we focus on the temperature-induced
multiphase PTs, we will mention some works which include
stresses as well, because these theories reduce to the temperature-
induced PTs at zero stresses. The main focus is on the description of
the first-order PTs for the case when a PT completes and there are
no structural changes after completing PT, like for melting,
martensitic PTs, and some reconstructive PTs. The main problem is
to develop a consistent phase field approach (PFA) for PTs between
an arbitrary number of phases. There are two very different ap-
proaches with different goals developed by two different commu-
nities. The first one is favored within the community working on
the description of PTs between the austenite (A) and any of the n
martensitic variants Mi and between martensitic variants Mj4Mi

(which represents twinning in most cases) [1e8]. It utilizes n in-
dependent order parameters hi, each of which describes A4Mi PTs
between nþ 1 phases. In most papers, researchers workwithin this

approach at the actual spatial scales, rather than within coarse-
grained theories for the microscale. Thus, typical actual interface
width is on the order of nanometers and detail of distribution of all
parameters within the interface are of interest. That is why all
simulations are limited to submicron samples.

The second multiphase approach is developed within the
community working on multiphase solidification (e.g., in eutectic
and peritectic systems) and grain growth [9e18]. It operates with
n þ 1 order parameters hi satisfying constraint

P
hi ¼ 1, similar to

phase concentrations. In most of these theories interface width
artificially increased by several orders of magnitude (see, e.g.
Refs. [11,16,17], or microscale theories [19,20]), and detail of varia-
tion of material parameters and fields across an interface are un-
realistic but this is not important for the chosen objectives. This is
done in order to be able to treat much larger samples comparable to
those relevant for studying solidification of actual materials.

Each of these approaches satisfies some important requirements
formulated to achieve some specific goals and have their advan-
tages and drawbacks. They will be analyzed in Appendix A and it
will be shown that none of them meets all the desired re-
quirements. Two of the requirements, which were imposed in the* Corresponding author.
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second approach and ignored in the first approach, are that each of
the two-phase PTs should be described by a single order parameter
and that an interface between any of the two phases should not
contain the third phase [16e18,21]. These conditions are, in
particular, required in order to have the possibility to obtain an
analytical solution for a propagating interface, which can be used to
calibrate parameters of the thermodynamic potential in terms of
interface energy, width, and mobility that are assumed to be
known. In the coarse-grained approach computational interface
width is usually used, which may be larger than the physical width
by several orders of magnitude, but keeps the same (i.e., indepen-
dent of the interface width) energy and mobility. If the order
parameter corresponding to the third phase appears within an
interface between two other phases, then (as it follows from the
thin-interface consideration [16,17,22,23]) a solution depends on
the interface width, which due to unphysical width leads to
incorrect results. Thus, PT between each of the two phases should
occur along the straight line (or any line, which is independent of
temperature, e.g., circle [8,24e27]) in the order parameter space.
Since a single constraint

P
hi ¼ 1 does not lead to such a trans-

formation path, additional efforts are made to satisfy these two
conditions [16e18]. These efforts, however, do not completely solve
the problem either. Note that the requirement that PT criteria
should follow from the thermodynamic instability conditions
accepted in Refs. [1,2,8] for the first approach was never used for
the second approach [9,11,16e18]. Hyperspherical order parame-
ters and a nonlinear constraint were suggested in Refs. [8,28] for
multivariant martensitic PTs.

In the paper, we explicitly formulate all requirements, which we
want to satisfy, first for two-phase PFA, then for an arbitrary
number of phases. Then we develop a theory, which satisfies all
these requirements. Instead of imposing constraints on the order
parameter, we introduce simple terms penalizing deviation of the
paths in the order parameter space from the straight lines con-
necting each of the two phases. By controlling these terms, we can
either fully avoid a third phase within an interface between two
other phases or allow it in order to describe the actual physical
situation [24e27,29e31]. Comparison with previous requirements
is performed. A number of model problems for a solidesolid PT via
intermediate melting (IM) in HMX energetic material are solved
and analyzed. Note that a similar approach, but without proper
justification and with emphases on stress-induced PTs and twin-
ning, when the third phase is excluded from the interface between
two other phases, was presented in Ref. [32]. Detailed comparison
of existingmodel with presentmodel was presented in Appendix A.

2. Two-phase model

2.1. GinzburgeLandau equation

The free energy j, dissipation rate D (both per unit mass), and
GinzburgeLandau equation for a single order parameter h have the
form

j ¼ jqðq; hÞ þ 0:5b
���Vh���2; D ¼ X _h � 0; (1)

_h ¼ LX ¼ �L
dj

dh
¼ L
�
� vjq

vh
þ bV2h

�
; (2)

where jq is the local thermal (chemical) energy, b > 0 and L > 0 are
the gradient energy and kinetic coefficients, X is the thermody-
namic driving force conjugate to _h, and d

d
is the variational deriva-

tive. Our goal is to formulate requirements to jq(q,h) and some
interpolation functions and find the simplest function that satisfies

these requirements. Since all requirements are for homogeneous
states, the gradient-related term in X can be omitted.

2.2. Conditions for free energy for bulk phases

1. We would like to enforce that h ¼ 0 corresponds to the phase P0
and h¼ 1 corresponds to the phase P1. It is convenient to express
any material property M (energy, entropy, specific heat, and
when mechanics is included, also elastic moduli and thermal
expansion) in the form

Mðh; qÞ ¼ M0ðqÞ þ ðM1ðqÞ �M0ðqÞÞ4mðhÞ; (3)

where M0 and M1 are values of the property M in phases P0 and P1,
respectively, and 4m(h) is the corresponding interpolation function,
which satisfies evident conditions

4mð0Þ ¼ 0; 4mð1Þ ¼ 1: (4)

In application to free energy, we obtain

jqðq;0Þ ¼ jq
0ðqÞ; jqðq;1Þ ¼ jq

1ðqÞ; (5)

where j0
q(q) and j1

q(q) are the free energies of the bulk phases P0
and P1. However, it is not sufficient to verbally impose that h ¼ 0
corresponds to the phase P0 and h ¼ 1 corresponds to the phase P1.
This should directly follow from the thermodynamic equilibrium
conditions, because bulk phases should be thermodynamic equi-
librium solutions of the GinzburgeLandau Eq. (2).

2. Values h ¼ 0 and h ¼ 1 should satisfy the thermodynamic
equilibrium conditions

X ¼ �vjqðq;0Þ
vh

¼ �vjqðq;1Þ
vh

¼ 0 (6)

for any temperature q. Otherwise, thermodynamic equilibrium
values of the order parameters obtained from condition X ¼ 0 will
depend on temperature. Substituting them in Eq. (3) will introduce
artificial temperature dependence of the property M and will not
allow us to obtain known properties M0 and M1 for bulk phases P0
and P1. It also follows from Eq. (6) that for any material property
which participates in jq, one has

d4mð0Þ
dh

¼ d4mð1Þ
dh

¼ 0: (7)

3. The free energy should not possess unphysical minima for any
temperature. Any minimum in the free energy that does not
correspond to the desired minima for phases P0 and P1 repre-
sents a spurious (unphysical) phase. It cannot be interpreted as a
”discovery” of a new phase, because it is just consequence of
chosen polynomial approximation rather than any physical
knowledge. In particular, one can ”discover” as many new
phases as he/she wishes, if some periodic function of the order
parameters is added to the potential.

The smallest degree potential that satisfies all these properties is
the fourth degree. Thus, starting with the full fourth degree poly-
nomial 4 ¼ h þ gh þ ah2 þ bh3 þ ch4 and applying conditions 1e3,
one obtains:
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