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a b s t r a c t

The idea that normal grain growth driven by surface tension may be described theoretically by the
hypothesis that the local velocity of an element of grain boundary is proportional to its local mean cur-
vature dates back more than half a century. von Neumann was the first to derive this relation and used it
to predict the rate of evolution of a two dimensional cell structure. MacPherson and Srolovitz extended
this development to describe growth in three dimensions; however, their result was couched in terms
that did not facilitate tests of the theory. In this paper expected value theorems established in stereology
are invoked to extend their result to provide a new equation that predicts the rate of change of volume of
grains in a microstructure which, while preserving the rigor and generality of the result, expresses it in
terms of quantities that can be measured in microstructures. This is illustrated with a set of measure-
ments based upon the theory derived from a grain growth simulation that successfully tests its predic-
tions. It is interesting that this result also exhibits an ‘‘n-6 rule” that is similar to, but not identical
with, that contained in von Neumann’s theory.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In 1951 [1] von Neumann presented what has become a classi-
cal theory of coarsening of a two dimensional soap film network at
a conference on grain growth as a written discussion to a paper by
Cyril Stanley Smith [2]. This theory applies Gibbs’ description of
the thermodynamics of systems with curved interfaces [3] to
derive the result that the local velocity of an element of soap film
in this coarsening process is proportional to its local curvature. The
theory assumes that the motion is controlled by the rate of diffu-
sion of atoms of the gas filling the bubbles on both sides through
the film. His theory also predicts the remarkable result that the
rate of growth of the area of a given soap cell is completely deter-
mined by the number of corners it has, a topological property of
the cell, and is independent of the details of the geometry of the
cell boundaries. He showed that cells with less than six corners
shrink while those with more than six corners grow. This classical
result has become known as the ‘‘n-6 rule”; it has fascinated
researchers for more than half a century.

As a consequence researchers in grain growth and related areas
have sought to extend von Neumann’s theory to three dimensional
cell structures. Most successful of these developments is that by

MacPherson and Srolovitz [4], which starts with the analogous
three dimensional version of von Neumann’s prediction, i.e., the
local velocity of an element of surface is proportional to its local
mean curvature, and derives an equation for the rate of change
of the volume of each cell in the three dimensional system:

dV
dt

¼ �2pMc LðDÞ � 1
6

Xn
i¼1

eiðDÞ
 !

ð1Þ

where M is a mobility, c is the surface tension, LðDÞ is a ‘‘natural
measure of the linear size” of the polyhedral cell, an abstruse geo-
metric property carefully defined in their text, and ei is the length
of an edge of the polyhedron and the summation is carried over
the set of edges. This rigorous three dimensional derivation pro-
vides the definitive solution to the quest for a three dimensional
version of von Neumann’s fascinating result.

This mathematically rigorous but abstract result does not pro-
vide a pathway for designing tests of the theory, either in the
physical world or in simulations. To this end this paper presents
a derivation of the three dimensional version of the von Neumann
equation that yields a new final result (an extension of
MacPherson and Srolovitz’ equation) that is also without
geometric assumptions and is expressed in terms of stereological
parameters that can be evaluated in simulations or serial section-
ing experiments. This new result has a tantalizing doff of the cap
to von Neumann’s two dimensional equation involving his
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topological parameter, the number of corners per grain. However
it is demonstrated that other metric parameters are also involved
in determining the rate of volume change of a grain, and the result
is thus not topological as von Neumann showed in two dimen-
sions. This presentation focuses on the new version of the theory,
and an assessment of its predictions using our grain growth
simulation.

2. Kinetic theory of grain growth

The classical phenomenological hypothesis in the theory of
Mullins and others [5–7] of surface tension driven grain growth
suggests that an element of grain boundary area moves toward
its center of curvature with a local velocity, v, which is proportional
to the local mean curvature of that element, H:

v ¼ �kH ð2Þ

where

H ¼ 1
2

1
r1

þ 1
r2

� �
ð3Þ

Here r1 and r2 are the local principal radii of curvature of the surface
element. The conventions chosen here are defined with respect to
any isolated grain. Focus on an element of area of the faces of the
grain. The local velocity associated with an element of surface is
defined to be positive if the element moves in the outward direction
thus increasing the volume of the grain; v is negative if directed
inward, contributing a decrease in the volume of the grain. Similarly
the sign of each local radius of curvatures is positive if its curvature
vector points toward the inside and negative if outside. Convex sur-
face elements result when both radii are positive (H is positive),
saddle surface elements occur when they have opposite signs (H
may be positive or negative, depending upon the values of r1 and
r2), while concave elements are characterized by both curvatures
being negative (H is negative). Accordingly, convex surface ele-
ments move inward (v is negative), concave elements move out-
ward (v is positive), and saddle elements may move inward or
outward depending upon the values of r1 and r2. Small grains are
bounded by mostly convex surface elements and shrink and disap-
pear; surface elements of very large grains are mostly concave and
grow.

The coefficient k is a kinetic factor containing the grain bound-
ary energy and mobility of the boundary element.

von Neumann derived his kinetic equation in his two dimen-
sional example based upon the assumption that the boundary
migration is controlled by the diffusion of gas atoms through the
film with boundary conditions at the two interfaces bounding
the film determined by local equilibrium with the curved surfaces.
Since these boundary elements are curved, local equilibrium con-
centrations are determined in part by the local curvature of these
surfaces, the capillary shift. This curvature dependence carries
through in the evaluation of the diffusion fluxes in the liquid and
thence to the velocity of the moving interfaces. This scenario does
not describe the grain growth process. In grain growth, there is no
film separating adjacent grains: only one interface; no capillarity
shifted interface concentrations determining a rate of volume dif-
fusion; indeed there are no volume diffusion fluxes that determine
the local velocity of the boundary interfaces. The inclusion of the
local curvature comes not from an assumption of a capillarity
shifted local interfacial equilibrium, but from a comparison of the
thermodynamics at a curved interface with that at an analogous
flat one. In its application to grain growth Eq. (2) is not a derived
kinetic equation; indeed it has the status of a plausible phenomeno-
logical hypothesis.

The rate of change of the volume of any given grain may be
computed from the distribution of local velocities, v, over its faces
by invoking the kinematic equation [8]:

dV
dt

¼
ZZ

S
vdS ¼

ZZ
S
�kHdS ¼ �k

ZZ
S
HdS ¼ �kMS ð4Þ

where the integration is carried over the areas S of the surfaces of
the grain faces; MS is called the integral mean curvature of the faces,
and thus becomes the central geometric factor in the analysis:

MS ¼
ZZ

S
HdS ð5Þ

The kinetic factor, k, is assumed to be constant in this theory.
Relaxation of this assumption can lead to generalizations of the
theory, but is beyond the scope of this paper.

The remainder of the development focuses upon the evaluation
of MS in terms of measurable quantities.

The integral mean curvatureM of a polyhedron, see Appendix A,
such as a single grain, with curved edges and faces has contribu-
tions from both its faces (S) and edges (E) [9,10]:

M ¼ MS þME ¼ MS þ 1
2

Z
L
vdL ð6Þ

where L is length of edges on the polyhedron and v is the local
dihedral angle, i.e., angle between the surface normals to the ele-
ments of cell faces that meet to form an element of edge. From
Eq. (5) the geometric parameter at the center of interest in this
kinetic theory of grain growth is

MS ¼ M � 1
2

Z
L
vdL

or

MS ¼ M � 1
2

R
L vdLR
L dL

Z
L
dL ¼ M � 1

2
hviL ð7Þ

where hvi is here defined to be the average dihedral angle along the
edges of the polyhedron.

The kinetic equation for any given grain in the structure may be
obtained by inserting Eq. (7) into Eq. (4):

dV
dt

¼ �k M � 1
2
hviL

� �
ð8Þ

This equation applies separately and without any simplifying
geometric assumptions to every grain in the structure. Comparison
with MacPherson and Srolovitz, Eq. (1), shows that

M ¼ 2pLðDÞ and 1
2
hviL ¼ p

3

Xn
i¼1

eiðDÞ ð9Þ

in their notation.

3. Stereological relationships

The geometric properties in Eq. (8) can be evaluated conceptu-
ally and experimentally without assumption by applying two of
the fundamental relationships of stereology [11]. The stereological
equations for these parameters are generally formulated in terms
of values per unit volume of microstructure. Thus MV is the integral
mean curvature of a set of polyhedral features per unit volume, MVS

is the integral mean curvature of their faces per unit volume, and LV
is the total length of their edges per unit volume.

The pertinent stereological equations are [12–14]:

MV ¼ 2pNA ð10Þ
and

LV ¼ 2PA ð11Þ
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