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A B S T R A C T

The stiffness of foam concrete depends primarily on the added porosity. Nevertheless, by performing 3D elastic
numerical simulations on artificial unit cells in the frame of periodic homogenization, it is shown that describing
foam concrete as a porous material is not sufficient to explain the experimental measurements of the Young
modulus for added porosity higher than 40%. Indeed, introducing sand as a third phase enables to recover
accurate estimates of the Young modulus. Furthermore, for highly porous concrete foams, it is shown that the
stress concentrates in thin members deprived of stiff sand particles, thus leading to a softer overall stiffness.

1. Introduction

Foam concrete, also named cellular concrete, offers many ad-
vantages as a building material. Indeed, it features a low density, a low
thermal conductivity and a valuable fire and water resistance [1,2].
Lastly, it can easily be manipulated, pumped and cast into various
shapes [3]. Regarding the formulation of foam concrete, the volume
fraction of void, hereby called the porosity, can be tuned to trade cost,
density and insulation properties for durability, strength and stiffness
[1,3-7]. Typical uses include floors, trench fills, roof insulation and
masonry units [8].

For lightweight concrete containing soft EPS beads formulated
in [4], extending [9], it has been shown that the Young modulus does
not depend on the size of the beads in the range 1mm–6.3mm, for
porosities in the range 0%–50%. As a result, the Young modulus mainly
depends on the porosity, exhibiting a one-to-one relationship in this
domain. In addition, different mean-field homogenization schemes
have been defined with the view to explain the dependence of the
Young modulus to the added porosity, thus aiming at a scientific
modelling of the stiffness. For instance, the fact that the experimental
measurements of the Young modulus are compliant with the Ha-
shin–Shtrikman upper bound [10] has been checked and the trisphere
model [11,12] has been successfully applied to provide a better esti-
mate of the stiffness [9]. Furthermore, the differential scheme [13]
ensures a good agreement on a wider range of porosity (0 ≤ p ≤ 56%)
as the Young modulus varies directly with (1− p)2 [14]. This exponent

of 2 is consistent with expected and measured trends for foams where
the bending is mainly attributed to the bending of the cell ribs [15,16].
Nevertheless, for foam concretes featuring high porosities (up to 75%),
power laws featuring exponents higher than 2 (E=24 GPa
(1− p)2.5 [17] or E=32.9 GPa(1− p)2.8 [6]) have been fitted to ex-
perimental results, thus questioning the use of the differential scheme
for porous materials.

As an alternative to Eshelby-based mean-field schemes, full-field
numerical elastic simulations can be performed on an artificial unit cell
of periodic composite materials to estimate the effective overall stiff-
ness [18-21]. Two steps are involved in the process. First, an artificial
periodic unit cell complying with the observed microstructure of the
composite material must be built. Parameters such as volume fractions,
pore size distributions and minimum spacing may be accounted for in
this step. Then, elastic computations help estimating the effective
stiffness of the composite material by relying on the periodic homo-
genization theory.

The description of foam concrete as a biphasic material will be
questioned by performing numerical simulations. First, concrete foam is
considered as a biphasic material and the Young modulus will be esti-
mated for different volume fractions, pore size distributions and para-
meters driving the geometry of the microstructure. These estimates will
be compared to experimental measurements to show that foam concrete
can hardly be described as a biphasic composite material at high por-
osity. Then, sand is introduced as the third phase and the estimated
Young modulus is compared to the experimental measurements.
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2. 3D numerical modelling

2.1. Generation of artificial unit cells

So as to perform 3D numerical simulations, unit cells complying
with the morphology of the considered material must be generated. By
mean of X-ray tomography, foam concrete can visibly be described as
porous matrix-inclusion material, where the pores are rather spherical
(Fig. 1). In addition, the sieve curve of the sand and the pore size dis-
tribution are such that the sand particles are smaller than the pores
(Fig. 2). Nevertheless, there is no separation of scale between the sand
and the pores. In the present section, a procedure to obtain unit cells
satisfying this description is proposed.

On the one hand, for matrix-inclusion composite materials, the
random sequential adsorption algorithm [22] or the Lubachevsky-Stil-
linger algorithm [23] are often applied to pack spherical inclusions and
reach the targeted volume fractions. On the other hand, the

microstructure of closed-cell foams is often modelled by using Voronoi
or Laguerre diagrams. In the present work, a continuum of micro-
structures between these geometries is defined to model closed-cell
foams of any volume fractions. First, the Lubachevsky-Stillinger algo-
rithm [23] is adopted to produce periodic unit cells featuring thousands
of spherical inclusions and volume fractions up to about 60% [24]. This
algorithm is briefly recalled in the next section.

2.1.1. The Lubachevsky-Stillinger algorithm for periodic unit cells
The Lubachevsky-Stillinger algorithm [23,25] is an event-driven

algorithm designed to pack hard spherical particles in a given volume.
As input, it requires the size of the unit cell and both the targeted vo-
lume fractions ϕi and size distributions for each kind of particles i ∈
(sand,pore).

The size distribution of sand particles or pores, named the sieve
curve, is defined by the volume fraction of particles Pi(v) of volume
lower than the volume v (Fig. 2). For the shake of simplicity, it is
modelled as a piecewise linear function on intervals [vj,vj+1], ∈ …j N0 i

s,
the volume fraction of particles in these range being pi,j. Ni

s is the
number of sieves. A list of targeted volumes vi,k, ∈ …k N0 i

u is randomly
picked according to the sieve curve so as to fill a volume ∑ =v Vϕk i k i, ,
where V is the volume of the rectangular unit cell. Ni

u is the number of
spheres of kind i to be placed in the unit cell. The Lubachevsky-Stil-
linger algorithm is seeded by randomly placing dots in the unit cell at
time t=0. Each dot becomes a sphere as time goes by, the growth of its
radius being linear. Consequently, the growth rate is set to

=a π v(3/(4 ) )i k i k, ,
1/3 so that all spheres reach their targeted volume vi,k

at time t=1.
The Lubachesky-Stillinger [23,25] enforces that the growing

spheres do not overlap. Indeed, the spheres are allowed to move at
uniform velocity and collisions are handled by changing these velocities
at the time of collisions. The time of the potential collision can be
analytically computed since the velocities are uniform and the growth
rate is linear. Consequently, the algorithm can jump from one collision
to the next without time-stepping. Other potential events are en-
counters with the boundaries of the unit cell, where instances of the
sphere must be introduced to ensure periodicity [24,26]. Indeed, either
the sphere hits a boundary and a new connected instance of the sphere
must be created at the opposite boundary or an instance leaves the unit
cell and it can be destroyed to save memory. An additional improve-
ment consists in splitting the domain into rectangular sectors to reduce
the number of potential events. Consequently, if N instances of different
spheres overlap with a sector, N(N− 1)/2+ 6N potential events can
occur in that sector.

The output of the Lubachevsky-Stillinger algorithm specifies the
center, the volume and the kind of each sphere in the unit cell. The
algorithm is very efficient at packing spherical particles as it can reach
volume fractions of 74% for an unimodal pore size distribution.
Nevertheless, the degree of order increases monotonically with the
jammed packing fraction [27] and reaching high volume fractions
(≥64.5%) requires more time as the growth rates need to be re-
duced [25]. To avoid these shortcomings, an additional step allowing to
reach any volume fractions of pores is introduced in the next section,
though the pores become non-spherical.

2.1.2. A continuum of microstructures between spherical inclusions and
Laguerre diagrams

Foams are often modelled by considering Laguerre diagrams, also
called Power diagrams. These partitions of space into convex poly-
hedral cells are built starting from n seeds characterized by their po-
sition x

k
and a scalar, named power, rk. The cell i is defined as the set of

points x such that

− − ≤ − − ∀x x r x x r k‖ ‖ ‖ ‖
i

i
k

k
2 2 2 2

(1)

If all powers rk are equal, the resulting tessellation is a Voronoi

Fig. 1. A 6×6mm2 slice extracted from an X-ray tomographic image of a foam
concrete of density 0.6 and porosity 70% [17], the pixel size being 6 μm. Dark
areas are pores, grey uniform areas are sand particles, white dots are likely
related to unhydrated cement particles.

Fig. 2. Pore size distributions are extracted from tomographic images at the
Navier Laboratory and the size distribution of sand grains is obtained by using
sieves. The pore size distribution slightly depends on the amount of foam added
to the mix, i. e. the porosity. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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