
Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

Bending strength of porous ceramics tiles: Bounds and estimates of effective
properties of an Intermingled Fractal Units’ model

Michele Brun, Ludovica Casnedi, Giorgio Pia⁎

Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

A R T I C L E I N F O

Keywords:
Mechanical behaviour
Homogenisation
Material design
Fractal modelling
Pore size distribution
Porous ceramics

A B S T R A C T

In this work, a semi-analytical model for the determination of effective mechanical properties of porous ceramic
tiles obtained by pore forming agent is proposed. MIP tests allow measuring porosity and pore size distribution of
experimental systems. These data are used for developing an Intermingled Fractal Units’ model (IFU) as ap-
proximant of porous microstructures. IFU model is then combined with classical structural mechanics theory for
the analytical computation of the bending strength of brittle ceramic beams. Bounds and estimates are given in
full form and the detailed algorithm can be easily implemented in a numerical package. A preliminary com-
parison with experimental data shows the capability of the proposed model to reproduce the effective me-
chanical behaviour of ceramic tiles.

1. Introduction

Porous ceramics represent an important class of materials being
applied in a large number of industrial and engineering fields [1]. Their
unique properties make them particularly suitable for fabricating filters
and membranes of particulates as well as hot corrosive gases [1,2],
environmental friendly fuel cell electrodes [3,4], catalyst supports for
biomaterials [5], piezoelectric materials [6] and acoustically as well as
thermally insulating bulk media [7,8]. Indeed, in these applications, the
required materials are characterised by relatively low mass [9,10], low
fractional density [11], low thermal conductivity [12], resistance to
chemical attack [13], high specific surface area [14,15], high perme-
ability, resistance to high temperature and thermal cycling [16–18] and
high mechanical properties [19,20].

In order to obtain the best performance of porous ceramics, parti-
cular attention has been paid to several fabrication methods such as gel
casting process [21,22], the organic foam technique [23], the freeze
casting method [24,25] and pore-forming agent method [12,26]. The
last method is one of the most frequently used methods to obtain porous
ceramic tiles [12,27,28]. It consists of mixing raw materials with ad-
ditives, which burn out during sintering process leaving voids into the
ceramic matrix. Manufactures can be obtained by compaction, applying
a uniaxial or hydrostatic stress capable of increasing powder bed den-
sity and extrusion, moulding the paste using a specific matrix. Fabri-
cation methods, sintering process (temperature, velocity etc.) and pore
forming agent typology give rise to a porous structure influencing pore
microstructural parameters such as size, size distribution, volume

fraction and higher-order topological properties including orientation,
three-dimensional shape, tortuosity etc. [29]. In particular, pore
forming agent allows to obtain the formation of a fragmentary and ir-
regular microstructure [30,31]. A large number of pore forming agents
can be used and starch is often implemented. However, its application is
limited to production of manufactories with large pores in the range of
5–50 µm [12,28,32,33]. In this sense, polymers represent a valid al-
ternative. Principally, they can guarantee excellent workability of the
mixture and result into low polluting and very cheap product [12].
Moreover, they burn out rapidly at a low temperature.

The possibility to control porous microstructure represents a crucial
objective for improving physical properties such as heat conductivity,
mass transfer, elastic and plastic behaviour. A particular attention must
be paid to mechanical properties. The design of porous materials needs
to balance all these aspects in order to obtain performing materials for
specific applications. The presence of voids obstructs heat transfer and
increases fluid permeability. At the same time, the mechanical beha-
viour is generally softened. On the contrary, a more dense material is
more conductive, less permeable by fluids and stiffer to mechanical
loads. In this sense, it is easy to note that mechanical properties are
related to resistant surface or pore voids fraction [34–36]. However,
mechanical resistance is also influenced by intrinsic characteristics of
the solid phases [37–39].

For such two-phase composites, the separation of length scale holds
such that 'microscopic' length scale is much larger than molecular di-
mensions, justifying the adoption of a continuum solid approach, but
much smaller than the characteristic length of the macroscopic sample,

https://doi.org/10.1016/j.ceramint.2018.03.028
Received 13 February 2018; Received in revised form 1 March 2018; Accepted 4 March 2018

⁎ Corresponding author.
E-mail address: giorgio.pia@dimcm.unica.it (G. Pia).

Ceramics International xxx (xxxx) xxx–xxx

0272-8842/ © 2018 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Please cite this article as: Brun, M., Ceramics International (2018), https://doi.org/10.1016/j.ceramint.2018.03.028

http://www.sciencedirect.com/science/journal/02728842
https://www.elsevier.com/locate/ceramint
https://doi.org/10.1016/j.ceramint.2018.03.028
https://doi.org/10.1016/j.ceramint.2018.03.028
mailto:giorgio.pia@dimcm.unica.it
https://doi.org/10.1016/j.ceramint.2018.03.028


justifying the definition of macroscopic or 'effective' properties [40].
Effective properties of heterogeneous media are obtained based on di-
rect measurements (experimental and numerical), semi-empirical rela-
tions and theoretical techniques. Empirical relations successfully pro-
vide effective properties, but they tend to be beneficial in correlating
data rather than predicting them.

Clearly, effective properties depend not only on the single phase
properties but also on the details of the microstructure (phase volume
fractions, orientations, sizes, shapes and spatial distribution of the do-
mains, connectivity of the phases etc.).

Roberts et al. studied the elastic properties of two-phase ceramics
composed by solid matrix and voids. In order to analyse the relationship
between microstructure and mechanical response, a finite-element
method (FEM) capable of taking into account porosity, pore shape and
the type of the interconnections between solid regions has been pro-
posed for some microstructures. The reported simple equations allow
obtaining a calculated Young's modulus in good agreement with ex-
perimental one [41], but they are restricted to monodisperse micro-
structures and a fixed number of realisations. Numerical analyses can
also be combined with X-ray tomography data describing the micro-
structure [42]; such technique is restricted to a single realisation and
poses several issues on the microstructure discretisation.

Atzeni et al. proposed an application of holistic model based on
fuzzy math for predicting the mechanical properties of a series of ve-
sicular basalt stones, wherein variables are determined by using por-
osimetric, mineralogical and weathering data [43].

Semi-empirical and theoretical techniques are capable of providing
estimates and bounds of effective properties based on partial statistical
information on the microstructure usually involving correlation func-
tions. Classical bounds are deduced from variational principles: we
remember here the classical Voigt and Reuss bounds, which, in the
isotropic case, can be computed from the weighted arithmetic and
harmonic means of the bulk and shear moduli [44,45], while an im-
proved bound based only on the phase volume fraction (two-point
correlation function) was given by Hashin and Shtrikman [46] in-
troducing the polarisation fields. We remember that the lower bounds
are trivially zero for a two-phase porous composite.

Bounds containing higher-order statistical information on the

microstructure have also been given [47–50]; they improve the two-
point bounds but are limited in the applications to the availability of
such microstructural information.

To adapt the results of formula for dilute composites to the case of
finite porosity, the most common approximation is the self-consistent
scheme [51,52], which is based on the elastic solution of an inclusion
embedded in an unknown effective medium that must be computed
implicitly. Alternatively, the differential method (see the review [53])
is based on the computation of the variation of effective properties due
to the addition of a small concentration of inclusions. Such two-
methods can also be applied to polydisperse heterogeneous media.

This brief overview, on the one hand, shows that porosity has been
extensively considered for correlations with elastic behaviour of ma-
terials [54,55], but, on the other hand, it highlights that the influence of
morphological and phenomenological features of porosity has been
often neglected [56,57].

It is clear that the interpretation of porosimetric data has to be done
by using good reproduction and representation of microstructures, with
particular attention to geometrical and morphological features. In this
sense, Euclidean geometry results into a rough instrument for de-
scribing complex shape, which can be often recognised in natural or
artificial systems. On the other hand, the application of Fractal
Geometry theory has aroused great interest and has shown a new road
for modelling approach.

Fractal Geometry, as representation method, has its roots long time
ago. However, its formalisation dates back to 1975 by Mandelbrot [58].
The central notion of Fractal Geometry is the concept of dimension.
Euclidean description identified only integer values. Indeed, in a three-
dimensional domain, any space is associated to a characteristic number,
called dimension, which describes all points in the considered system.
In this sense, the Euclidean dimension is equal to 0 for points, 1 for
lines, 2 for surfaces and 3 for volumes. This definition is limited to sets,
defined dimensionally concordant sets, for which useful dimensions co-
incide [58]. However, this definition is problematic for subsets,
wherein more complex shapes are present. In order to be described,
several geometric figures need a non-integer dimension value; the
fractal dimension (Df). One of the most explicit examples, which sum-
marised all properties of fractals, is represented by Sierpinski carpet. It

Fig. 1. IFU procedure to simulate experimental pore cumulative
curve. Starting point is represented by the geometrical construc-
tion of IFU mixing two elementary units based on Sierpinski
carpet and a portion of filled surface. The resulting IFU is capable
of reproducing the pore cumulative curve, the pore size dis-
tribution and the pore volume fraction of experimental porosi-
metric data.
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