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A B S T R A C T

Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying
mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic
and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict
the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic
to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression,
support vector machine regression, random forest, and artificial neural network. We observe that, although
linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent
predictions, even for untrained data, thanks to its inherent ability to handle non-linear data. We further note that
the predictive ability of simpler methods, such as linear regression, could be improved using additional physics-
based constraints. Such methods, called as physics-informed machine learning can be used to extrapolate the
behavior of untrained compositions as well. Overall, we suggest that a more extensive use of machine learning
approaches could significantly accelerate the design of novel glasses with tailored properties.

1. Introduction

Silicate glasses are often exposed to water—from the manufacturing
stage to their service lifetime—which can result in corrosion and dis-
solution [1–5]. The durability of glasses in aqueous environments plays
a critical role in various applications and processes, including bioactive
glasses, laboratory glassware, atmospheric weathering of outdoor
glasses, post-manufacturing treatment, nuclear waste immobilization,
geological processes, or dissolution-precipitation-induced creep [6–16].

Depending on each application, glass dissolution may be desirable
or not. As such, developing novel glasses with tailored dissolution rates
requires an accurate prediction of their dissolution kinetics. However,
despite decades of research, the lack of reliable models predicting how
the dissolution kinetics depends on intrinsic (glass composition, struc-
ture, surface geometry, etc.) and extrinsic conditions (temperature,
pressure, solvent chemistry, etc.) [1,13,17–20] suggests that improved
predictive models are required. Elucidating composition–durability
relationships in silicate glasses is further complicated by the facts that

glasses can exhibit a virtually infinite number of possible compositions
and that dissolution kinetics is highly non-additive with respect to
composition [20–23]. These issues are further complicated by the fact
that the rate-limiting mechanism of dissolution can change over time,
as exemplified in the cases of silicate minerals [8] or nuclear waste
glasses [10,12]. To this end, various empirical and mechanism-based
models have been suggested to predict the dissolution rate of oxide
glasses [1,13,17,19,24–28]. However, these models are usually ap-
plicable only for prescribed glass composition envelopes, solvent
chemistry (e.g., acidic or caustic), thermodynamic conditions (e.g.,
temperature range). Although a mechanistic model of dissolution
transferable to a broad range of glass compositions would be highly
desirable, this task might not be realistic due to the structural com-
plexity of glasses and the fact that several dissolution mechanisms can
be observed, individually or in combination.

As an alternative route, data-driven models relying on machine
learning are a promising tool to predict composition–property re-
lationships in glasses based on analysis of the large quantities of
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experimental data that are already available [29–34]. Data-driven
predictive models range from simple regression-based methods to
highly non-linear methods, such as artificial neural networks—usability
of which depends on the complexity of the mechanism involved
[35–38]. Such methods exploit available databases of high-quality
measurements to develop semi-empirical models to improve predictive
capabilities [35]. These methods have been used for a wide range of
applications, ranging from face recognition [39] to infrastructure life-
span prediction [40,41] or the design of novel composites [42]. How-
ever, very few studies have been carried out and published for the use
these methods for predicting the properties of glasses [30,43,44].

Here, we investigate the ability of some machine learning ap-
proaches to predict the dissolution kinetics of a selection of sodium
aluminosilicate glasses. In particular, we use linear regression (LR),
random forest (RF), support vector machine regression (SVM), and ar-
tificial neural network (ANN), which represent four different classes of
machine learning techniques. On account of the intrinsically non-linear
character of the composition–dissolution relationship, we demonstrate
that the ANN approach offers the most reliable prediction of the SiO2

leaching rate over a wide range of glass compositions.

2. Methodology

2.1. Data set

To test the predictive capability of different machine learning
methods, we rely on the database of dissolution rates reported by
Hamilton [23]. The experiments were conducted on eight different
sodium aluminosilicate glasses, including albite glass
(Na2O–Al2O3–6SiO2), jadeite glass (Na2O–Al2O3–4SiO2), nepheline
glass (Na2O–Al2O3–2SiO2), and Na2O–xAl2O3–(3− x)SiO2 glasses,
where x=0.0, 0.2, 0.4, 0.6, and 0.8. The composition range thus
covers both tectosilicate and peralkaline compositions, with varying
ratio of bridging to non-bridging oxygens. For each composition, the
dissolution experiments were carried out on glass powders with grain
sizes ranging from 74-to-149 μm. The dissolution kinetics was assessed
both in acidic and caustic conditions, specifically, pH=1, 2, 4, 6.4, 9,
and 12. These experiments were conducted in static conditions at a
surface area to solution volume ratio (SA/V) of approximately 1.4 to
2.0 cm−1 [23]. For each pH, the extent of dissolution was assessed from
the concentration of leached SiO2 in solution at five to seven regular
intervals (e.g., 24, 49, 96, 168, and 336 h) of solvent contact. The
complete dataset used for the present study is provided in Supple-
mentary Information. In each case, the pH was recorded before any
dissolution and at the time of the dissolution measurement. All the
experiments were conducted at 25 °C and ambient pressure. For a de-
tailed description of the measurements, the reader is invited to refer to
Ref. [23].

2.2. Inputs and outputs

Here, our goal is to develop a predictive model of the dissolution
kinetics of silicate glasses. The output of the model is chosen as being
the SiO2 leaching rate (in units of log[mol SiO2/cm2/s]) as this quantity
captures the dissolution of the silicate skeleton of the glass. This gives a
total of 299 data points. However, the methodology developed herein is
general and can be applied to other outputs (e.g., the Na2O leaching
rate or the glass weight loss rate). Based on the information contained
in the selected database, the following variables are used as inputs: (i)
the composition of the glass, (ii) the initial pH of the solution, and (iii)
the pH at the time of measurement. Note that the dissolution rate was
found to be fairly constant over the measured period, so that time was
not included as an input. The temperature is not used since it is as-
sumed to be constant over time.

2.3. Machine learning methodology

For most machine learning methods, the available data (inputs and
outputs) is randomly divided into (i) a training set and (ii) a test set.
The training set and test set are scattered within the whole area occu-
pied by data due to the random sampling. The training and test set are
chosen in such a way that the characteristics of the overall dataset are
preserved in both the subsets. In other words, a test set is typically a
dataset that is independent of the training set but follows the same
probability distribution as that of the training set. Thus, all the com-
positions and pH values are represented with the same probability in
both the training and test set. The training set is first used to train the
model, that is, to optimize the parameters that relate the inputs to the
outputs. The test set, which is fully unknown to the model, is then used
to assess the performance of the model—by comparing the outcomes of
the model for inputs the model has not been explicitly trained for to
reference outputs. Such division of data into training and test sets helps
to avoid any potential overfitting, which is a common problem when
the entire data set is used to training the model. Here, 70% and 30% of
the data are attributed to the training and test sets, respectively. Note
that, in the case of the ANN method, a more elaborated data classifi-
cation is used, as discussed below. In the following, we provide a brief
description of the predictive methodologies used herein.

2.3.1. Linear regression
2.3.1.1. Simple linear regression. The linear regression (or least squares
fitting) is the simplest form of regression technique. It consists of
finding the best fitting straight line through a set of points. For a given
input vector X=(X1, X2, …, Xp) and an output Y, the linear regression
has the following form:
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where βj are the fitting parameters of the model and p the number of
such parameters. The βj values are usually obtained by minimizing the
error of predicted values with respect to the actual values, which is
represented by the residual sum of squares (RSS). Thus, for a given
training data set (x1,y1), …, (xN,yN)with N points, the RSS can be
obtained by:
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where yi is the measured value at the ith observation with features
xi j=(xi1,xi2,…,xip). The least square estimate of the parameters βj has
the smallest variance among all linear unbiased estimates and, hence, is
used commonly for linear regression. Note that, in unbiased estimates,
all the input variables have non-zero coefficients, irrespective of
whether they affect the output significantly or not.

2.3.1.2. Lasso regression. As an unbiased estimate, one of the major
drawbacks of the least square estimate is its large variance. Such
variance can be reduced by introducing a small bias, wherein the
unimportant input variables are neglected. To this extent, we use the
lasso regression method, which typically improves the prediction
accuracy of linear regression by introducing a bias and shrinking the
coefficients of insignificant variables to zero. In other words, lasso
regression identifies the important variables that affect the prediction
significantly. To achieve this, the lasso regression method introduces a
constraint on the regression coefficients using a penalty factor λ as:
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Note that in the lasso regression method, the penalty is imposed on
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