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Electron energy-loss spectroscopy (EELS) is used to investigate the association of hydrogenwith helium bubbles
in zirconium. Conventional EELS data yield a signal at 13.5 eV (similar to the hydrogen K-edge, 13 eV), which is
spatially distributed around the peripheries of bubbles and may correlate with the concentration of hydrogen/
deuterium in the material. Ultra-high energy resolution EELS yields a signal at 148.6 meV (comparable to a
range of Zr\\H bonds, 130–156 meV) from a region containing bubbles and no visible hydrides. These signals
are interpreted in the context of either bubble surface chemisorption or bubble stress field trappingmechanisms.
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As an impurity, hydrogen can play a significant role in the degrada-
tion and embrittlement of structural metals [1], including steels [2],
aluminium [3], titanium [4] and zirconium [5]. Understanding the
location and nature of hydrogen in zirconium alloys is important
because hydrogen absorbed during aqueous corrosion can lead to
property degradation [6] and delayed hydride cracking [7]. Techniques
like hot vacuum extraction [8] provide bulk hydrogen measurements,
whilst Raman [9], secondary ion-mass [10,11], laser induced plasma
spectroscopies [12] and X-ray diffraction [13–15] have sub-micron to
millimetre resolutions and candetect hydrogen (or hydrides). However,
the majority of potential traps for hydrogen in zirconium are smaller
than the resolutions afforded by these techniques and detecting hydro-
gen on nanometre scales is immensely challenging.

This study addresses this issue by examining the association of
hydrogen with nanometre-scale helium bubbles in a zirconium alloy
matrix. Literature on iron/steel, aluminium, iron, nickel, copper, molyb-
denum, palladium and tantalum systems [16–20] suggests that hydro-
gen can be bound at, or close to, helium bubble surfaces. In those

cases, this trapping is thought to occur either through chemisorption
[18] or as a product of the stress fields surrounding bubbles [16,21],
but no equivalent studies have been performed on zirconium alloys.
Aside from bubbles, there are many other potential microstructural
traps for hydrogen including vacancies [22], dislocations [23], substitu-
tional species [24] and irradiation-induced matrix defects [25,26], but
these are not considered in this paper.

In this work, the association of hydrogen with helium bubbles is ex-
plored using Electron Energy-Loss Spectroscopy (EELS). This technique
has been successfully used to identify ~50–100 nm diameter hydrogen
bubbles formed in biological samples under electron irradiation [27].
Their hydrogen content was confirmed from spectral evidence of the
hydrogen K-shell ionisation edge. In inorganic matter, similar evidence
for the K-edge has been reported for nano-bubbles both of hydrogen in
focused ion beam treated diamond [28] and bubbles in silicon carbide
irradiated with H2

+ and He+ ions [29]. In both cases, the K-edge signal
was taken to indicate the presence of molecular hydrogen.

Recent advances in ultra-high resolution EELS in a new generation of
monochromated scanning transmission electron microscopes have en-
abled vibrational spectroscopy to be performed with nanometre spatial
resolutions [30]. As the lightest element, hydrogen yields vibrational
peaks of the highest energy, theoretically making it the element most
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easily detectable using vibrational spectroscopy [31]. However, the
spatial resolution of the technique is limited by the delocalised nature
of the vibrational features, in that the signal contains a component
that is apparent nanometres away from the source [31]. Nonetheless,
this technique has been used to detect signals arising from the binding
of hydrogen in both titanium hydride and epoxy resin [32].

Zircaloy-4 was studied in ‘as-received' and ‘deuterium charged'
states (charging conditions: 0.1 M KOH and D2O, 0.1 A·cm−2, 24 h,
20–40 °C). These contained ~10 wt.ppm(H) or ~10 wt.ppm(H) plus
~120 wt.ppm(D), respectively. Approximately 10 wt.ppm(H) is intrinsic
to manufacturing of Zircaloy-4 and was measured using Hot Vacuum
Extraction (HVE). ~120 wt.ppm(D) was calculated from weight gain
measurements after cathodic charging. Discs with electron transparent
regions were prepared by mechanical punching, grinding and
electropolishing (5% perchloric acid in methanol, −40 to −60 °C).
Electropolishing introduces a small further quantity of hydrogen,
which cannot be quantified using HVE because of the low material
volume. Henceforth, the two sample conditions are termed ‘Low H/D’
and ‘HighH/D’, as production of a hydrogen-free samplewas unrealistic.

The discs were implanted with 10 keV He+ ions using the
Microscope and Ion Accelerator for Materials Investigations
(MIAMI) facility [33]. A beam current of 0.06–0.10 nA (flux of
~2.75 × 1014 to 5 × 1014 ions·cm−2·s−1) achieved 300 nC (fluence
of 1.5 × 1018 ions·cm−2). Bubbles were typically ⌀1–7 nm, although
some bubbles approaching ⌀10 nm were observed. SRIM [34] calcu-
lations indicated helium implantation throughout the thickness of
the regions considered suitable for EELS data acquisition. Sample
temperatures were maintained at 300 °C during implantations, dis-
solving ~56 wt.ppm of H/D [35] and providing sufficient diffusionmo-
bility for interaction with the forming bubbles.

Samples studied using conventional EELS were first oxygen plasma
cleaned. A JEOL ARM-200CF TEMwith a GatanQuantum 965ER electron
energy-loss spectrometer was utilised at The University of Glasgow.
The instrument was operated at 200 kV and had a Zero-Loss Peak
(ZLP) Full-Width at Half-Maximum (FWHM) of ~0.5 eV. The conver-
gence and collection semi-angles were 29 and 36 mrad, respectively.

The High H/D material was studied using Ultra-High-Resolution
(UHR) EELS and vibrational spectroscopy, using the Nion UltraSTEM
100 MC ‘Hermes’ at the SuperSTEM Laboratory [36]. The microscope
was operated at 60 kV and had a ZLP FWHM of 0.3 eV, which was im-
proved to 0.02 eV, following monochromation. The convergence and
collection semi-angles were 31 and 44 mrad, respectively. Some data
were collected using an aloof beam, where delocalised vibrational
modes were detected using a beam passing through the vacuum in
close proximity to a sample. This effectively removes the spectral
background associated with the beam passing through material, thus
improving the signal-to-noise ratio.

Analyses were performed using Gatan Digital Micrograph (with
additional functionality provided by the EELSTools plugin [37]) and
MathWorks Matlab. Zero-loss peak misalignment was calibrated in all
data and pixel-to-pixel energy drift (arising from instability in the
beam) was corrected for, where necessary. The Principal Component
Analysis feature of the Multivariate Statistical Analysis tool [38] was
used to remove random noise from conventional EELS data; this tool
could not be successfully applied to the UHR EELS data.

Spectral deconvolution analyses were performed using the spec-
tral difference method [39]. This involved subtracting a matrix spec-
trum from a bubbles spectrum (after scaling to account for thickness
differences), yielding the spectral difference. A scaling window of
~45–50 eV was used, encompassing the high energy shoulder of
the Zr N2,3 edge. Components were identified from the difference
spectra, which could be mapped by applying energy-selected win-
dows to the spectrum images. Vibrational modes were extracted
from UHR EELS data by subtracting a background function (the sum
of two power laws) from the zero-loss peak, yielding difference
spectra.

Implanted bubbles are visible as approximately circular regions of
darker contrast in Fig. 1a, indicating a reduced material density. Sparse
hydrides were also observed at room temperature in the implanted
regions (Fig. 1), indicating that for both hydrogen concentrations the
bubbles did not suppress hydride formation. The presence of hydrides
does not preclude the association of hydrogen with bubbles, as the
region of implantation in each electropolished disc is very small, so it
would not be sufficient in size to influence the hydrogen concentration
in the non-implanted bulk significantly. Consequently, were the
bubbles to ‘trap’ hydrogen at the 300 °C implantation temperature,
Fickian diffusion from the non-implanted bulk would ensure the
equilibrium solute hydrogen concentration was maintained in the
matrix interstices in the implanted region. Upon post-implantation
cooling, the non-trapped interstitial hydrogen would then form
hydrides in the implanted region as the solubility limit decreased with
temperature.

EELS data characteristic of the matrix and bubbles are presented in
Fig. 2. The two most prominent signals are the zirconium bulk plasmon
oscillation (maximum at 16.6 eV) and the zirconium N2,3 shell
ionisation edge (reported onset of 29 eV [40], with a delayedmaximum
observed at 41 eV in the present data). Subtraction of the matrix spec-
trum from corresponding bubble spectrum yields spectral differences
that clearly include the helium K-shell ionisation edge. This feature
has a sharp onset reported at 22 eV [41], with an experimentally
observedmaximum at 23.4 eV, followed by a gradually diminishing tail.

Another signal is apparent to the left of the zirconium bulk plasmon
in the spectral difference. This feature is broad, of comparable magni-
tude to the helium K-edge, has an apparent maximum at 13.5 eV, but
appears to be a delayed edge that has an onset around 6 eV. The position
of this signal is close to that reported for the hydrogen K-shell ionisation
edge (13 eV [42]), but the morphology of this feature differs from that
reported elsewhere [28,42]. This may indicate that it arises from, or is
superposed upon, signals from another source.

With observed energy ranges for the known helium and possible
hydrogen K-shell ionisation edge signals, it becomes possible to map
spatially the intensity of these signatures by applying energy-selected
windows to the spectrum images. The maps for these energy ranges
are given in Fig. 3 for the High H/D and Low H/D samples.

As seen clearly for the High H/D sample (upper in Fig. 3), the feature
at 13.5 eV is spatially distributed as rings of intensity around the periph-
eries of bubbles and will henceforth be referred to as ‘halos’. Interest-
ingly, those bubbles mapped from the High H/D sample (upper in
Fig. 3) generally appear to possess a stronger halo than those of compa-
rable sizes in the LowH/D sample (lower Fig. 3). This is unlikely to be an
artefact of mapping or imaging parameters (such as magnification and
resolution), since the pixel sizes are comparable between the maps
(0.36 × 0.36 nm for High H/D versus 0.40 × 0.40 nm for Low H/D), as
are the foil thicknesses (inelastic mean free path range of 0.36–0.66
for High H/D versus 0.42–0.59 for Low H/D). This observation holds
true for other datasets not presented here, suggesting that there may
be a correlation between hydrogen concentration and halo intensity.
However, the present collection of datasets is not sufficiently large to
state a robust correlation between hydrogen/deuterium concentration
and halo intensity.

If not originating from hydrogen, the observed halos could be cavity
(if gaseous bubbles) or interface (if solid bubbles) plasmon oscillations
arising from matrix-bubble interfaces [43,44]. David et al. attributed
the observation of 12.3–13.3 eV halos around helium nano-bubbles in
silicon to originating from cavity plasmon oscillations [45]. However,
it is difficult to produce silicon specimens devoid of hydrogen, so
those halos observed by David et al. may actually be characteristic of
hydrogen associated with the bubbles. Indeed, a later publication by
those authors [46] shows a “burst” bubble (containing no helium) that
does not have an associated halo. As a burst bubble would still be
expected to yield a surface plasmon, its absence suggests that it
originates from hydrogen. Although the work of Heyward et al. [20]
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