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Effect of strain hardening and volume fraction of crystalline phase on
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Continuum finite element analyses are performed to ascertain the role played by the volume fraction (Vf) and
strain hardening behavior of crystalline reinforcements on the strength and ductility of bulkmetallic glassmatrix
composites (BMGCs). Results show that a highly strain hardening elongated dendrite with Vf ~45% would make
the BMGCductilewithout any penalty on the strength. These results provide design guidelines for strong yet duc-
tile BMGCs.
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The proverbial ‘Achilles heel’ that is preventing widespread deploy-
ment of bulk metallic glasses (BMGs) in structural components is the
lack of tensile ductility. This is due to localization of plasticflow into nar-
row regions that are often referred to as shear bands (SBs) [1–2]. Nu-
merous materials engineering strategies are being pursued to
circumvent this problem [2]. Amongst these, the composites approach,
wherein a secondary crystalline dendritic phase is introduced into the
microstructure, is most promising. While the dendritic phase imparts
the required ductility, a concomitant reduction in strength, by virtue
of the fact that its yield strength ismuch lower than that of the bulkme-
tallic glass (BMG) matrix, is inevitable [2–5]. While several experimen-
tal and few modeling studies on these composites have been already
reported in literature [3–10], many questions remain unanswered. For
example, ‘What is the optimumcombination ofmicrostructural andma-
terial parameters such as volume fraction (Vf), size, morphology and
strain hardening behavior of the dendrites, and the inter-dendritic spac-
ing that would give high ductility without compromising on the
strength of BMG?’ To address this issue, detailed continuum simulations
can be useful, since an experimental study, wherein only one of the
aforementioned microstructural parameters is varied while keeping
others constant, is difficult. Hence, we have performed finite element
simulations of tensile deformation response of BMGCs wherein both Vf
and strain hardening exponent, N, are varied systematically.

Fig. 1 shows a plane strain tension specimen discretized into 5760
four-noded quadrilateral elements. The top edge of this specimen is
stretched at a constant strain rate of 2 × 10−3 s−1, while the bottom
edge is restrained from moving in X2 direction. Motivated by the fine
and elongated dendrites observed in microstructures of various
BMGCs [10–12], the dendrites are assumed to have rounded-
rectangular shape with an aspect ratio of four, and dispersed uniformly
in the BMG matrix. Three values of Vf (17%, 30% and 45%) are consid-
ered. While more complex BMGC microstructures could be modeled,
theywill not yield clear insights about how Vf andN influence themech-
anism of plastic deformation and failure under tensile loading.

A thermodynamically consistent, finite deformation, non-local plas-
ticity theory [13], which has been shown to predict the mechanical be-
havior of BMGs [13–16] and nanoglasses [17] well, is employed to
represent the constitutive response of the BMG matrix. The use of
such a model ensures accurate representation of shear localization, an
important attribute of plastic deformation in BMGs, without being sen-
sitive to the mesh [18]. This is accomplished by making the size of ele-
ments much smaller than the expected SB width, which scales with
the internal material length, lc, in the model (see below) [16,17]. The
evolution of free volume, ξ, is governed by diffusion, creation by plastic
shearing and hydrostatic stress, and annihilation by structural relaxa-
tion as [13]:

_ξ ¼ _ξo s1=s3ð Þ ∇2ξ
� �

þ ζ _γ− _ξop=s3
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Here, _ξo ¼ f o expð−ϕ=2ξÞ, where fo is a reference frequency and ϕ a
geometrical factor. Also, s1 and s2 are gradient and defect free energy co-
efficients (with units of energy per unit length and volume, respective-
ly), while s3 controls the resistance to free volume generation. Further, ζ
is coefficient of free volume generation due to plastic shearing, p hydro-
static pressure, ξT the fully annealed free volume at temperature T [13].

Also in Eq. (1), _γ is the rate of plastic shearing which is given by:

_γ ¼ _γo
f p

c
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Here, _γo is the reference shear strain rate and a N 0 strain rate sensi-
tivity parameter. Further, τ is the Mises shear equivalent stress, while
rest of the terms in f p constitute a back stress [13,16,17] and c is cohe-
sion. It is assumed to evolve as c=coexp{−k(ξ−ξT)}, where co is the
initial value and k b 0, a constant that controls free volume induced soft-
ening. The initial cohesion is slightly perturbed (by 1%) following a nor-
mal distribution and randomly assigned to the BMG matrix in order to
trigger SBs [16,17]. Most of the material parameters in the plasticity
model are taken from the work of Thamburaja [13] which are typical
of BMGs. The ratio of Young's modulus to initial mean cohesion, E/co
and Poisson's ratio are chosen as 100 and 0.38, respectively. The param-
eter ζ is taken as 0.02, ξT as 0.00063 at T=293 K, s2/c0 as 2800 and s3/c0
as 240. The constants fo, ϕ, k, _γo and a are assumed as 323 s−1, 0.15,
−250, 1.73 × 10−3 s−1 and 0.02, respectively. It can be seen from
Eq. (2) that a material length, lc enters into the model through constant
s1, which is taken as lc ¼

ffiffiffiffiffiffiffiffiffiffiffi
s1=s2

p
[16,17]. All geometrical lengths in this

work are normalized by lc.
The crystalline phase is assumed to follow J2 flow theory of plasticity

with power law hardening of the form:

εp

εy
¼ σ

σy

� �1
N

−1; σ ≥σy: ð3Þ

Here, σand εp are Mises tensile equivalent stress and plastic strain,
respectively. Also, σy and εy are the initial tensile yield stress and strain,
respectively. While the Young's modulus of dendrites is taken to be 50%
higher than the matrix [5,7,19], σy is assumed to be 40% lower [3–5].
Three values of N (0.1, 0.2 and 0.3) are considered.

Normalized nominal stress (Σ2/co) versus nominal strain (E2) curves
of the monolithic BMG and BMGCs with different Vf and N = 0.2, are
displayed in Fig. 2(a). The responses of theBMGCs deviate from linearity
at E2 ~ 0.01–0.015. Thereafter, stress continues to increases till it reaches
a peak, Σ̂. It is lower for BMGCs than the monolithic BMG and reduces
further with increase in Vf, while the corresponding E2 increases. This
can be rationalized by noting that Σ̂ is mainly governed by the yield
strength of the matrix and average stress in dendrites at onset of global
yielding in the composite. Interestingly, while curves pertaining to
lower Vf attain the peak immediately after deviating from the linear re-
gime, the Vf=45% case exhibits perceptible strain hardening before Σ̂ is
reached. Although similar trends have been observed in experiments on
BMGCs [5,11,20,21], the mechanistic origin for the strain hardening is
not well understood. The present simulations show that the slope of
the stress-strain curve, dΣ2/dE2, for BMGC follows the rule of mixture
in the range of E2 from 0.02 to 0.024 and becomes positive for high
Vf = 45% (Fig. 2(b)). This implies that competition between free volume
induced softening in the matrix and hardening in dendrites governs macro-
scopic strain hardening observed in BMGCs.

Further, in the case of BMG, an abrupt drop in stress occurs at
E2 ~ 0.025 signifying rapid strain localization in the dominant SB [13,
16,17]. A similar, but less steep, stress drop takes place in BMGC with
Vf = 17% at a higher strain. With increase in Vf, the abrupt stress drop
gets further delayed and becomes more gradual. Finally, when Vf =
45%, the BMGC shows no sharp stress drop up to E2 = 0.1. These results
clearly show that an increase in Vf delays the process of flow localization
and also tends to stabilize it as evidenced by accompanying stress drop be-
coming less steep.

Further insights into the flowmechanism are obtained through con-
tour plots of maximum principal logarithmic plastic strain log λl

p which
are displayed in Figs. 3 and 4. Fig. 3(a) shows that a mature SB with
large plastic strain has formed in the BMG at E2 = 0.025 leading to
rapid softening induced by free volume evolution (see Eq. (1)) and
steep drop in stress. By contrast, dendrites in BMGC begin to yield earlier
owing to their low σy (Fig. 3(b) and (e)). This, in turn, leads to a strain
mismatch at matrix-dendrite interfaces and large stress concentration
within the matrix separating two adjacent rows of dendrites. Conse-
quently, these regions act as SB nucleation sites where plastic yielding
initiates (Fig. 3(b)). On subsequent loading,while plastic deformation re-
mains homogeneouswithin the dendrites, it begins to localize in thema-
trix for Vf = 30% (Fig. 3(c)) causing rapid stress drop at E2 = 0.03–0.04
(Fig. 2(a)). However, the dendrites in the path of the dominant SB hinder
its propagation (see dendrites ‘a’ and ‘b’ in Fig. 3(c)). When E2 is in-
creased to 0.06, the SB penetrates through the above dendrites as well
and spans the entire specimen width leading to shear offset m-m
(Fig. 3(d)). A second dominant SB in the specimen's lower-half, which
is blocked by dendrites ‘c’ and ‘d’, localized neck n-n, aswell as numerous
weak secondary SBs indicated by arrows, may also be seen in Fig. 3(d).

On comparing Fig. 3(e)with (b), it is observed that the number of SB
nucleation sites in the matrix is more for Vf = 45%. However the inter-
dendritic spacing gets reduced, which makes localization difficult due
to non-availability of straight paths for unhindered shear band propaga-
tion. Overall, this leads tomultiple SBswithin the sample, andmore uni-
formly distributed plastic strain, see Fig. 3(f), (g), except for some inter-
dendritic regions near the specimen sides where localized necks have
developed (Fig. 3(g)). Consequently, themacroscopic stress drops grad-
ually with strain for this case (Fig. 2(a)). However, when E2 is increased
to 0.1, two dominant SBs extend across the specimen, penetrating and
distorting somedendriteswhile circumventing a fewothers (see arrows
in Fig. 3(h)). The localized necks indicated bym-m and n-n also become
more pronounced at this stage. Thus the deformation mechanism seen

Fig. 1. Finite element model employed in plane strain tension simulation of BMGCs
consisting of dendrites uniformly distributed in BMG matrix (Vf = 17%). The normalized
dimensions of the specimen are 40 (W/lc) × 80 (L/lc).
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