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A self-consistent model for thermodynamics of multicomponent solid solutions
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The self-consistent concept recently published in this journal (108, 27–30, 2015) is extended from a binary to a
multicomponent system. This is possible by exploiting the trapping concept as basis for including the interaction
of atoms in terms of pairs (e.g. A–A, B–B, C–C…) and couples (e.g. A–B, B–C,…) in amulticomponent systemwith
A as solvent and B, C,… as dilute solutes. The model results in a formulation of Gibbs-energy, which can be min-
imized. Examples show that the couple and pair formation may influence the equilibrium Gibbs energy
markedly.
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For more than a century the ideal solution model has been applied to
describe the molar Gibbs energy of a material system. However, it has
been recognized that the ideal solution model often suffers from a lack
of accuracy, as already reported by Hildebrand [1] in 1927 and
Guggenheim [2] in 1932. They introduced the regular solution model,
based also on the framework of statisticalmechanics for binary systems.
The ideal and regular solution models assume a random distribution
for the atoms of all components in lattice positions. Redlich and Kister
[3] extended the interaction energy term to adapt the model to experi-
ments (the so-called “sub-regular model”). Most recently the authors of
this paper introduced a more accurate treatment of the interaction
energy between solvent A and solute B in a binary system. The
according model has been denominated as the self-consistent model,
see [4], since it accounts for the number of A–A, A–B and B–B bonds in
equilibrium in dependence on the interatomic interaction energies.
Now the authors succeeded in generalizing this self-consistent model
for multi-component systems.

One could receive an impression that the present model is only a
modified version of the quasichemical model, see [5–8], or of the pair
approximation in the conventional cluster variation method; for a
recent overview see Mohri [9]. Both the quasichemical model and the
pair approximation provide the same formula for the configurational
entropy. These approaches are based on the calculation of the configu-
rational entropy from the numbers of pairs, see e.g. Eq. (7) in [9].
According to Pelton et al. [6] the formula for the configurational entropy

is exact only for a one-dimensional lattice (Ising model) and is only an
approximation for a three-dimensional lattice. As pointed out by Hillert
et al. [8] the formula for the configurational entropy may give negative
values in systems with a coordination number larger than 2, and they
attempted to introduce some correction terms to avoid this discrepancy.
The presentmodel, however, excludes the possibility of negative values
of the configurational entropy, since our approach is based on the sub-
division of the system into subsystems. The configurational entropy
for each subsystem is then calculated by means of the approved
Bragg–Williams approximation guaranteeing non-negative values of
the configurational entropy.

With respect to the application of the cluster variation method we
refer to the overview paper by van de Walle and the program system
ATAT [10]. The extension of the cluster variation method (cluster ex-
pansion method) is applicable to rather complicated material systems,
see e.g. [11]. In contrast to these demanding concepts our approach
provides a set of non-linear equationswith an easily calculable solution.

We assume a system of volumeΩ, [Ω]=m3/mol, consisting of 1mol
of substitutional atoms (or lattice positions) with n substitutional com-
ponents. The vacancy site fraction is assumed to be the equilibrium one
and to be negligible compared to the site fraction of the components
(the role of vacancies is neglected). The component 1 is the solvent,
and components i=2,… ,n are dilute solutes. The quantity cij=cji,
i , j=2,… ,n, [c]=mol/m3, denotes the concentration of atoms of
component i having an atom of component j as the nearest neighbour.
The assumption of dilute solutes guarantees that the concentration of
solute atoms with more than one solute atom as nearest neighbours is
negligible compared to cij and, thus, such complexes are not considered.
The quantity ci1, i=1,… ,n, denotes the concentration of atoms of
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component iwith only solvent atoms as nearest neighbours. The overall
chemical composition of the system is given by fixed mole fractions yi,
i=1,… ,n, ∑n

i¼1yi¼1. For ci=yi/Ω being the overall concentration of
component i it holds

Xn
j¼1

cij ¼ ci⇒ci1 ¼ ci−
Xn
j¼2

cij; i ¼ 1;…;n : ð1Þ

Considering Eq. (1) and the symmetry relations cij=cji, i , j=2,… ,n
one can show that the concentrations cij, i=2,… ,n, j≥ i can be consid-
ered as independent internal state variables, which unambiguously de-
scribe the state of the system within the present model. Their number
n(n−1)/2 represents the number of degrees of freedom of the system.
The bonding energy between atoms of component i and of component j
related to 1mol of bonds is denoted as εij=εji, i , j=1,… ,n, [εij]=J/mol.
The equilibrium values of cij can be obtained by minimization of
the Gibbs energy G of the system with respect to free concentrations
cij, i=2,… ,n, j≥ i.

Each atom of a solute component i, i=2,… ,n provides Z
neighbouring positions. The molar volume Vi, [Vi]=m3/mol, of these
positions is given by

1
Vi

¼ Zci; i ¼ 2;…;n: ð2Þ

The molar volume of positions with solely solvent atoms in their
neighbourhood is given with Eq. (2) as

1
V1

¼ 1
Ω
−
Xn
i¼2

1
Vi

¼ 1
Ω
−Z
Xn
i¼2

ci: ð3Þ

Thus, the system is subdivided into n subsystems whose “weights”
are given by the ratios wi=Ω/Vi, i=1,… ,n, yielding with Eq. (3) the

constraint ∑
n

i¼1
wi¼1.

The site fractions yij of component j in the nearest neighbourhood of
atoms of component i are given by

yij ¼ cijVi; i ¼ 1;…;n; j ¼ 2;…;n; ð4Þ

which are not symmetric, yij≠yji, yij=yjiVi/Vj=yjicj/ci, and subjected to
the constraint.

yi1 ¼ 1−
Xn
j¼2

yij; i ¼ 1;…;n: ð5Þ

To express the total Gibbs energy G of the system, it is necessary to
determine the number Nij of i–j bonds between atoms of components
i and j in the system. The following relations for Nij hold:

Nij ¼ Nji ¼ Ωcij; i; j ¼ 2;…;n; i≠ j; ð6Þ

determining the number of interatomic bonds between different
components i and j;

Nii ¼ Ωcii=2; i ¼ 2;…;n; ð7Þ

note that two atoms of component i correspond to one i–i bond;

N1i ¼ Ni1 ¼ Ω Zci−
Xn
j¼2

cij

0
@

1
A; i ¼ 2;…;n; ð8Þ

expressing N1i as the number of moles of 1–i bonds makes it necessary
to reduce the total number of bonds of atoms of component i by the

number of their bonds with other substitutional atoms j, j=2,… ,n;

N11 ¼ Z=2−
Xn
i¼2

Xn
j¼i

Nij−
Xn
i¼2

N1i ¼ Z=2þΩ
Xn
i¼2

Xn
j¼2

cij=2−Z
Xn
i¼2

ci

0
@

1
A; ð9Þ

note that the total number of moles of bonds in the system is Z/2.
The total Gibbs energy G of the system can now be calculated, with

Rg being the gas constant and T the temperature, by using Eqs. (2)–(9)
and the bonding energies εij=εji of the i–j bonds, as

G ¼ Gþ RgT
Xn
i¼1

wi

Xn
j¼1

yij lnyij−
Xn
i¼1

Xn
j¼i

εijNij

¼ Gþ RgTw1 1−
Xn
j¼2

y1 j

0
@

1
A ln 1−

Xn
j¼2

y1 j

0
@

1
Aþ

Xn
j¼2

y1 j lny1 j

0
@

1
A

þ RgT
Xn
i¼2

wi 1−
Xn
j¼2

yij

0
@

1
A ln 1−

Xn
j¼2

yij

0
@

1
Aþ

Xn
j¼2

yij lnyij
� �0

@
1
A

−
Xn
i¼1

Xn
j¼i

εijNij;
ð10:1Þ

where G is the part of Gibbs energy independent of internal state
variables and the configurational entropy (second term in Eq. (10.1))
is calculated bymeans of the approved Bragg–Williams approximation.
The total Gibbs energy G can be reformulated in terms of concentrations
cij=cji, i , j=2,… ,n as

G ¼ Gþ RgTΩ

1
V1

−
Xn
i¼2

ci−
Xn
j¼2

cij

0
@

1
A

0
@

1
A ln 1−V1

Xn
i¼2

ci−
Xn
j¼2

cij

0
@

1
A

0
@

1
Aþ

Xn
i¼2

ci−
Xn
j¼2

cij

0
@

1
A ln ci−

Xn
j¼2

cij

0
@

1
AV1

0
@

1
A

0
@

1
Aþ

Xn
i¼2

1
Vi

−
Xn
j¼2

cij

0
@

1
A ln 1−

Xn
j¼2

cijVi

0
@

1
Aþ

Xn
j¼2

cij ln cijVi
� �0

@
1
A

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

−Ω

"Xn
i¼2

Xn
j¼2

εijcij=2þ
Xn
i¼2

εi1

 
Zci−

Xn
j¼2

cij

!

þε11

 
Z= 2Ωð Þ−Z

Xn
i¼2

ci þ
Xn
i¼2

Xn
j¼2

cij=2

!#
:

ð10:2Þ

The equilibrium in the system corresponds to the minimum of G
with respect to the free internal state variables and leads to a set of
equations

∂G
∂ Ωcij
� � ¼ 0; i ¼ 2;…;n; j≥ i: ð11Þ

The derivative of G for i≠ j reads as

∂G
∂ Ωcij
� � ¼ RgT

2 ln 1−
Xn
l¼2

y1l

 !
− lny1i− lny1 j

− ln 1−
Xn
l¼2

yil

 !
− ln 1−

Xn
l¼2

yjl

 !
þ ln yij

� �
þ ln yji

� �
2
66664

3
77775

− εij−εi1−ε j1 þ ε11
� � ¼ RgT ln

yijyjiy
2
11

y1iy1 jyi1yj1

 !
− ε11 þ εij−εi1−ε j1
� �

¼ RgT ln
yijyjiy

2
11

y1iy1 jyi1yj1

 !
−Eij; ð12:1Þ
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